Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimdecfgtioc Structured version   Visualization version   Unicode version

Theorem pimdecfgtioc 40925
Description: Given a non-increasing function, the preimage of an unbounded above, open interval, when the supremum of the preimage belongs to the preimage. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimdecfgtioc.x  |-  F/ x ph
pimdecfgtioc.a  |-  ( ph  ->  A  C_  RR )
pimdecfgtioc.f  |-  ( ph  ->  F : A --> RR* )
pimdecfgtioc.i  |-  ( ph  ->  A. x  e.  A  A. y  e.  A  ( x  <_  y  -> 
( F `  y
)  <_  ( F `  x ) ) )
pimdecfgtioc.r  |-  ( ph  ->  R  e.  RR* )
pimdecfgtioc.y  |-  Y  =  { x  e.  A  |  R  <  ( F `
 x ) }
pimdecfgtioc.c  |-  S  =  sup ( Y ,  RR* ,  <  )
pimdecfgtioc.e  |-  ( ph  ->  S  e.  Y )
pimdecfgtioc.d  |-  I  =  ( -oo (,] S
)
Assertion
Ref Expression
pimdecfgtioc  |-  ( ph  ->  Y  =  ( I  i^i  A ) )
Distinct variable groups:    x, A, y    x, F, y    x, I    x, R    y, S
Allowed substitution hints:    ph( x, y)    R( y)    S( x)    I(
y)    Y( x, y)

Proof of Theorem pimdecfgtioc
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 pimdecfgtioc.y . . . . . . 7  |-  Y  =  { x  e.  A  |  R  <  ( F `
 x ) }
2 ssrab2 3687 . . . . . . 7  |-  { x  e.  A  |  R  <  ( F `  x
) }  C_  A
31, 2eqsstri 3635 . . . . . 6  |-  Y  C_  A
43a1i 11 . . . . 5  |-  ( ph  ->  Y  C_  A )
5 pimdecfgtioc.a . . . . 5  |-  ( ph  ->  A  C_  RR )
64, 5sstrd 3613 . . . 4  |-  ( ph  ->  Y  C_  RR )
7 pimdecfgtioc.c . . . 4  |-  S  =  sup ( Y ,  RR* ,  <  )
8 pimdecfgtioc.e . . . 4  |-  ( ph  ->  S  e.  Y )
9 pimdecfgtioc.d . . . 4  |-  I  =  ( -oo (,] S
)
106, 7, 8, 9ressiocsup 39781 . . 3  |-  ( ph  ->  Y  C_  I )
1110, 4ssind 3837 . 2  |-  ( ph  ->  Y  C_  ( I  i^i  A ) )
12 pimdecfgtioc.x . . . 4  |-  F/ x ph
13 elinel2 3800 . . . . . . . 8  |-  ( x  e.  ( I  i^i 
A )  ->  x  e.  A )
1413adantl 482 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( I  i^i  A ) )  ->  x  e.  A )
15 pimdecfgtioc.r . . . . . . . . 9  |-  ( ph  ->  R  e.  RR* )
1615adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( I  i^i  A ) )  ->  R  e.  RR* )
17 pimdecfgtioc.f . . . . . . . . . 10  |-  ( ph  ->  F : A --> RR* )
183, 8sseldi 3601 . . . . . . . . . 10  |-  ( ph  ->  S  e.  A )
1917, 18ffvelrnd 6360 . . . . . . . . 9  |-  ( ph  ->  ( F `  S
)  e.  RR* )
2019adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( I  i^i  A ) )  ->  ( F `  S )  e.  RR* )
2117adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( I  i^i  A ) )  ->  F : A
--> RR* )
2221, 14ffvelrnd 6360 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( I  i^i  A ) )  ->  ( F `  x )  e.  RR* )
238, 1syl6eleq 2711 . . . . . . . . . . 11  |-  ( ph  ->  S  e.  { x  e.  A  |  R  <  ( F `  x
) } )
24 nfrab1 3122 . . . . . . . . . . . . . . 15  |-  F/_ x { x  e.  A  |  R  <  ( F `
 x ) }
251, 24nfcxfr 2762 . . . . . . . . . . . . . 14  |-  F/_ x Y
26 nfcv 2764 . . . . . . . . . . . . . 14  |-  F/_ x RR*
27 nfcv 2764 . . . . . . . . . . . . . 14  |-  F/_ x  <
2825, 26, 27nfsup 8357 . . . . . . . . . . . . 13  |-  F/_ x sup ( Y ,  RR* ,  <  )
297, 28nfcxfr 2762 . . . . . . . . . . . 12  |-  F/_ x S
30 nfcv 2764 . . . . . . . . . . . 12  |-  F/_ x A
31 nfcv 2764 . . . . . . . . . . . . 13  |-  F/_ x R
32 nfcv 2764 . . . . . . . . . . . . . 14  |-  F/_ x F
3332, 29nffv 6198 . . . . . . . . . . . . 13  |-  F/_ x
( F `  S
)
3431, 27, 33nfbr 4699 . . . . . . . . . . . 12  |-  F/ x  R  <  ( F `  S )
35 fveq2 6191 . . . . . . . . . . . . 13  |-  ( x  =  S  ->  ( F `  x )  =  ( F `  S ) )
3635breq2d 4665 . . . . . . . . . . . 12  |-  ( x  =  S  ->  ( R  <  ( F `  x )  <->  R  <  ( F `  S ) ) )
3729, 30, 34, 36elrabf 3360 . . . . . . . . . . 11  |-  ( S  e.  { x  e.  A  |  R  < 
( F `  x
) }  <->  ( S  e.  A  /\  R  < 
( F `  S
) ) )
3823, 37sylib 208 . . . . . . . . . 10  |-  ( ph  ->  ( S  e.  A  /\  R  <  ( F `
 S ) ) )
3938simprd 479 . . . . . . . . 9  |-  ( ph  ->  R  <  ( F `
 S ) )
4039adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( I  i^i  A ) )  ->  R  <  ( F `  S ) )
4118adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( I  i^i  A ) )  ->  S  e.  A )
42 pimdecfgtioc.i . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  A  A. y  e.  A  ( x  <_  y  -> 
( F `  y
)  <_  ( F `  x ) ) )
4342r19.21bi 2932 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  A. y  e.  A  ( x  <_  y  ->  ( F `  y )  <_  ( F `  x )
) )
4414, 43syldan 487 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( I  i^i  A ) )  ->  A. y  e.  A  ( x  <_  y  ->  ( F `  y )  <_  ( F `  x )
) )
4541, 44jca 554 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( I  i^i  A ) )  ->  ( S  e.  A  /\  A. y  e.  A  ( x  <_  y  ->  ( F `  y )  <_  ( F `  x )
) ) )
46 mnfxr 10096 . . . . . . . . . . 11  |- -oo  e.  RR*
4746a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( I  i^i  A ) )  -> -oo  e.  RR* )
48 ressxr 10083 . . . . . . . . . . . 12  |-  RR  C_  RR*
496, 8sseldd 3604 . . . . . . . . . . . 12  |-  ( ph  ->  S  e.  RR )
5048, 49sseldi 3601 . . . . . . . . . . 11  |-  ( ph  ->  S  e.  RR* )
5150adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( I  i^i  A ) )  ->  S  e.  RR* )
52 elinel1 3799 . . . . . . . . . . . 12  |-  ( x  e.  ( I  i^i 
A )  ->  x  e.  I )
5352, 9syl6eleq 2711 . . . . . . . . . . 11  |-  ( x  e.  ( I  i^i 
A )  ->  x  e.  ( -oo (,] S
) )
5453adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( I  i^i  A ) )  ->  x  e.  ( -oo (,] S ) )
55 iocleub 39725 . . . . . . . . . 10  |-  ( ( -oo  e.  RR*  /\  S  e.  RR*  /\  x  e.  ( -oo (,] S
) )  ->  x  <_  S )
5647, 51, 54, 55syl3anc 1326 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( I  i^i  A ) )  ->  x  <_  S )
57 breq2 4657 . . . . . . . . . . 11  |-  ( y  =  S  ->  (
x  <_  y  <->  x  <_  S ) )
58 fveq2 6191 . . . . . . . . . . . 12  |-  ( y  =  S  ->  ( F `  y )  =  ( F `  S ) )
5958breq1d 4663 . . . . . . . . . . 11  |-  ( y  =  S  ->  (
( F `  y
)  <_  ( F `  x )  <->  ( F `  S )  <_  ( F `  x )
) )
6057, 59imbi12d 334 . . . . . . . . . 10  |-  ( y  =  S  ->  (
( x  <_  y  ->  ( F `  y
)  <_  ( F `  x ) )  <->  ( x  <_  S  ->  ( F `  S )  <_  ( F `  x )
) ) )
6160rspcva 3307 . . . . . . . . 9  |-  ( ( S  e.  A  /\  A. y  e.  A  ( x  <_  y  ->  ( F `  y )  <_  ( F `  x ) ) )  ->  ( x  <_  S  ->  ( F `  S )  <_  ( F `  x )
) )
6245, 56, 61sylc 65 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( I  i^i  A ) )  ->  ( F `  S )  <_  ( F `  x )
)
6316, 20, 22, 40, 62xrltletrd 11992 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( I  i^i  A ) )  ->  R  <  ( F `  x ) )
6414, 63jca 554 . . . . . 6  |-  ( (
ph  /\  x  e.  ( I  i^i  A ) )  ->  ( x  e.  A  /\  R  < 
( F `  x
) ) )
651rabeq2i 3197 . . . . . 6  |-  ( x  e.  Y  <->  ( x  e.  A  /\  R  < 
( F `  x
) ) )
6664, 65sylibr 224 . . . . 5  |-  ( (
ph  /\  x  e.  ( I  i^i  A ) )  ->  x  e.  Y )
6766ex 450 . . . 4  |-  ( ph  ->  ( x  e.  ( I  i^i  A )  ->  x  e.  Y
) )
6812, 67ralrimi 2957 . . 3  |-  ( ph  ->  A. x  e.  ( I  i^i  A ) x  e.  Y )
69 nfv 1843 . . . . 5  |-  F/ x  z  e.  ( I  i^i  A )
7069nfci 2754 . . . 4  |-  F/_ x
( I  i^i  A
)
7170, 25dfss3f 3595 . . 3  |-  ( ( I  i^i  A ) 
C_  Y  <->  A. x  e.  ( I  i^i  A
) x  e.  Y
)
7268, 71sylibr 224 . 2  |-  ( ph  ->  ( I  i^i  A
)  C_  Y )
7311, 72eqssd 3620 1  |-  ( ph  ->  Y  =  ( I  i^i  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990   A.wral 2912   {crab 2916    i^i cin 3573    C_ wss 3574   class class class wbr 4653   -->wf 5884   ` cfv 5888  (class class class)co 6650   supcsup 8346   RRcr 9935   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075   (,]cioc 12176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-ioc 12180
This theorem is referenced by:  decsmflem  40974
  Copyright terms: Public domain W3C validator