Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumfzf Structured version   Visualization version   Unicode version

Theorem esumfzf 30131
Description: Formulating a partial extended sum over integers using the recursive sequence builder. (Contributed by Thierry Arnoux, 18-Oct-2017.)
Hypothesis
Ref Expression
esumfzf.1  |-  F/_ k F
Assertion
Ref Expression
esumfzf  |-  ( ( F : NN --> ( 0 [,] +oo )  /\  N  e.  NN )  -> Σ* k  e.  ( 1 ... N ) ( F `
 k )  =  (  seq 1 ( +e ,  F
) `  N )
)
Distinct variable group:    k, N
Allowed substitution hint:    F( k)

Proof of Theorem esumfzf
Dummy variables  i  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . . . . . 6  |-  F/ k  i  =  1
2 oveq2 6658 . . . . . 6  |-  ( i  =  1  ->  (
1 ... i )  =  ( 1 ... 1
) )
31, 2esumeq1d 30097 . . . . 5  |-  ( i  =  1  -> Σ* k  e.  ( 1 ... i ) ( F `  k
)  = Σ* k  e.  ( 1 ... 1 ) ( F `  k
) )
4 fveq2 6191 . . . . 5  |-  ( i  =  1  ->  (  seq 1 ( +e ,  F ) `  i
)  =  (  seq 1 ( +e ,  F ) `  1
) )
53, 4eqeq12d 2637 . . . 4  |-  ( i  =  1  ->  (Σ* k  e.  ( 1 ... i
) ( F `  k )  =  (  seq 1 ( +e ,  F ) `
 i )  <-> Σ* k  e.  ( 1 ... 1 ) ( F `  k
)  =  (  seq 1 ( +e ,  F ) `  1
) ) )
65imbi2d 330 . . 3  |-  ( i  =  1  ->  (
( F : NN --> ( 0 [,] +oo )  -> Σ* k  e.  ( 1 ... i ) ( F `  k )  =  (  seq 1
( +e ,  F ) `  i
) )  <->  ( F : NN --> ( 0 [,] +oo )  -> Σ* k  e.  ( 1 ... 1 ) ( F `  k
)  =  (  seq 1 ( +e ,  F ) `  1
) ) ) )
7 nfv 1843 . . . . . 6  |-  F/ k  i  =  n
8 oveq2 6658 . . . . . 6  |-  ( i  =  n  ->  (
1 ... i )  =  ( 1 ... n
) )
97, 8esumeq1d 30097 . . . . 5  |-  ( i  =  n  -> Σ* k  e.  ( 1 ... i ) ( F `  k
)  = Σ* k  e.  ( 1 ... n ) ( F `  k
) )
10 fveq2 6191 . . . . 5  |-  ( i  =  n  ->  (  seq 1 ( +e ,  F ) `  i
)  =  (  seq 1 ( +e ,  F ) `  n
) )
119, 10eqeq12d 2637 . . . 4  |-  ( i  =  n  ->  (Σ* k  e.  ( 1 ... i
) ( F `  k )  =  (  seq 1 ( +e ,  F ) `
 i )  <-> Σ* k  e.  ( 1 ... n ) ( F `  k
)  =  (  seq 1 ( +e ,  F ) `  n
) ) )
1211imbi2d 330 . . 3  |-  ( i  =  n  ->  (
( F : NN --> ( 0 [,] +oo )  -> Σ* k  e.  ( 1 ... i ) ( F `  k )  =  (  seq 1
( +e ,  F ) `  i
) )  <->  ( F : NN --> ( 0 [,] +oo )  -> Σ* k  e.  ( 1 ... n ) ( F `  k
)  =  (  seq 1 ( +e ,  F ) `  n
) ) ) )
13 nfv 1843 . . . . . 6  |-  F/ k  i  =  ( n  +  1 )
14 oveq2 6658 . . . . . 6  |-  ( i  =  ( n  + 
1 )  ->  (
1 ... i )  =  ( 1 ... (
n  +  1 ) ) )
1513, 14esumeq1d 30097 . . . . 5  |-  ( i  =  ( n  + 
1 )  -> Σ* k  e.  ( 1 ... i ) ( F `  k
)  = Σ* k  e.  ( 1 ... ( n  +  1 ) ) ( F `  k
) )
16 fveq2 6191 . . . . 5  |-  ( i  =  ( n  + 
1 )  ->  (  seq 1 ( +e ,  F ) `  i
)  =  (  seq 1 ( +e ,  F ) `  (
n  +  1 ) ) )
1715, 16eqeq12d 2637 . . . 4  |-  ( i  =  ( n  + 
1 )  ->  (Σ* k  e.  ( 1 ... i
) ( F `  k )  =  (  seq 1 ( +e ,  F ) `
 i )  <-> Σ* k  e.  ( 1 ... ( n  +  1 ) ) ( F `  k
)  =  (  seq 1 ( +e ,  F ) `  (
n  +  1 ) ) ) )
1817imbi2d 330 . . 3  |-  ( i  =  ( n  + 
1 )  ->  (
( F : NN --> ( 0 [,] +oo )  -> Σ* k  e.  ( 1 ... i ) ( F `  k )  =  (  seq 1
( +e ,  F ) `  i
) )  <->  ( F : NN --> ( 0 [,] +oo )  -> Σ* k  e.  ( 1 ... ( n  +  1 ) ) ( F `  k
)  =  (  seq 1 ( +e ,  F ) `  (
n  +  1 ) ) ) ) )
19 nfv 1843 . . . . . 6  |-  F/ k  i  =  N
20 oveq2 6658 . . . . . 6  |-  ( i  =  N  ->  (
1 ... i )  =  ( 1 ... N
) )
2119, 20esumeq1d 30097 . . . . 5  |-  ( i  =  N  -> Σ* k  e.  ( 1 ... i ) ( F `  k
)  = Σ* k  e.  ( 1 ... N ) ( F `  k
) )
22 fveq2 6191 . . . . 5  |-  ( i  =  N  ->  (  seq 1 ( +e ,  F ) `  i
)  =  (  seq 1 ( +e ,  F ) `  N
) )
2321, 22eqeq12d 2637 . . . 4  |-  ( i  =  N  ->  (Σ* k  e.  ( 1 ... i
) ( F `  k )  =  (  seq 1 ( +e ,  F ) `
 i )  <-> Σ* k  e.  ( 1 ... N ) ( F `  k
)  =  (  seq 1 ( +e ,  F ) `  N
) ) )
2423imbi2d 330 . . 3  |-  ( i  =  N  ->  (
( F : NN --> ( 0 [,] +oo )  -> Σ* k  e.  ( 1 ... i ) ( F `  k )  =  (  seq 1
( +e ,  F ) `  i
) )  <->  ( F : NN --> ( 0 [,] +oo )  -> Σ* k  e.  ( 1 ... N ) ( F `  k
)  =  (  seq 1 ( +e ,  F ) `  N
) ) ) )
25 fveq2 6191 . . . . . 6  |-  ( k  =  x  ->  ( F `  k )  =  ( F `  x ) )
26 nfcv 2764 . . . . . 6  |-  F/_ x { 1 }
27 nfcv 2764 . . . . . 6  |-  F/_ k { 1 }
28 nfcv 2764 . . . . . 6  |-  F/_ x
( F `  k
)
29 esumfzf.1 . . . . . . 7  |-  F/_ k F
30 nfcv 2764 . . . . . . 7  |-  F/_ k
x
3129, 30nffv 6198 . . . . . 6  |-  F/_ k
( F `  x
)
3225, 26, 27, 28, 31cbvesum 30104 . . . . 5  |- Σ* k  e.  {
1 }  ( F `
 k )  = Σ* x  e.  { 1 }  ( F `  x
)
33 simpr 477 . . . . . . 7  |-  ( ( F : NN --> ( 0 [,] +oo )  /\  x  =  1 )  ->  x  =  1 )
3433fveq2d 6195 . . . . . 6  |-  ( ( F : NN --> ( 0 [,] +oo )  /\  x  =  1 )  ->  ( F `  x )  =  ( F `  1 ) )
35 1z 11407 . . . . . . 7  |-  1  e.  ZZ
3635a1i 11 . . . . . 6  |-  ( F : NN --> ( 0 [,] +oo )  -> 
1  e.  ZZ )
37 1nn 11031 . . . . . . 7  |-  1  e.  NN
38 ffvelrn 6357 . . . . . . 7  |-  ( ( F : NN --> ( 0 [,] +oo )  /\  1  e.  NN )  ->  ( F `  1
)  e.  ( 0 [,] +oo ) )
3937, 38mpan2 707 . . . . . 6  |-  ( F : NN --> ( 0 [,] +oo )  -> 
( F `  1
)  e.  ( 0 [,] +oo ) )
4034, 36, 39esumsn 30127 . . . . 5  |-  ( F : NN --> ( 0 [,] +oo )  -> Σ* x  e.  { 1 }  ( F `  x )  =  ( F ` 
1 ) )
4132, 40syl5eq 2668 . . . 4  |-  ( F : NN --> ( 0 [,] +oo )  -> Σ* k  e.  { 1 }  ( F `  k )  =  ( F ` 
1 ) )
42 fzsn 12383 . . . . . 6  |-  ( 1  e.  ZZ  ->  (
1 ... 1 )  =  { 1 } )
4335, 42ax-mp 5 . . . . 5  |-  ( 1 ... 1 )  =  { 1 }
44 esumeq1 30096 . . . . 5  |-  ( ( 1 ... 1 )  =  { 1 }  -> Σ* k  e.  ( 1 ... 1 ) ( F `  k )  = Σ* k  e.  { 1 }  ( F `  k ) )
4543, 44ax-mp 5 . . . 4  |- Σ* k  e.  ( 1 ... 1 ) ( F `  k
)  = Σ* k  e.  {
1 }  ( F `
 k )
46 seq1 12814 . . . . 5  |-  ( 1  e.  ZZ  ->  (  seq 1 ( +e ,  F ) `  1
)  =  ( F `
 1 ) )
4735, 46ax-mp 5 . . . 4  |-  (  seq 1 ( +e ,  F ) `  1
)  =  ( F `
 1 )
4841, 45, 473eqtr4g 2681 . . 3  |-  ( F : NN --> ( 0 [,] +oo )  -> Σ* k  e.  ( 1 ... 1
) ( F `  k )  =  (  seq 1 ( +e ,  F ) `
 1 ) )
49 simpl 473 . . . . . . . . 9  |-  ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  ->  n  e.  NN )
50 nnuz 11723 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
5149, 50syl6eleq 2711 . . . . . . . 8  |-  ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  ->  n  e.  (
ZZ>= `  1 ) )
52 seqp1 12816 . . . . . . . 8  |-  ( n  e.  ( ZZ>= `  1
)  ->  (  seq 1 ( +e ,  F ) `  (
n  +  1 ) )  =  ( (  seq 1 ( +e ,  F ) `
 n ) +e ( F `  ( n  +  1
) ) ) )
5351, 52syl 17 . . . . . . 7  |-  ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  ->  (  seq 1
( +e ,  F ) `  (
n  +  1 ) )  =  ( (  seq 1 ( +e ,  F ) `
 n ) +e ( F `  ( n  +  1
) ) ) )
5453adantr 481 . . . . . 6  |-  ( ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  /\ Σ* k  e.  ( 1 ... n ) ( F `  k )  =  (  seq 1
( +e ,  F ) `  n
) )  ->  (  seq 1 ( +e ,  F ) `  (
n  +  1 ) )  =  ( (  seq 1 ( +e ,  F ) `
 n ) +e ( F `  ( n  +  1
) ) ) )
55 simpr 477 . . . . . . 7  |-  ( ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  /\ Σ* k  e.  ( 1 ... n ) ( F `  k )  =  (  seq 1
( +e ,  F ) `  n
) )  -> Σ* k  e.  ( 1 ... n ) ( F `  k
)  =  (  seq 1 ( +e ,  F ) `  n
) )
5655oveq1d 6665 . . . . . 6  |-  ( ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  /\ Σ* k  e.  ( 1 ... n ) ( F `  k )  =  (  seq 1
( +e ,  F ) `  n
) )  ->  (Σ* k  e.  ( 1 ... n
) ( F `  k ) +e
( F `  (
n  +  1 ) ) )  =  ( (  seq 1 ( +e ,  F
) `  n ) +e ( F `
 ( n  + 
1 ) ) ) )
57 nfv 1843 . . . . . . . . . 10  |-  F/ k  n  e.  NN
5857nfci 2754 . . . . . . . . . . 11  |-  F/_ k NN
59 nfcv 2764 . . . . . . . . . . 11  |-  F/_ k
( 0 [,] +oo )
6029, 58, 59nff 6041 . . . . . . . . . 10  |-  F/ k  F : NN --> ( 0 [,] +oo )
6157, 60nfan 1828 . . . . . . . . 9  |-  F/ k ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )
62 fzsuc 12388 . . . . . . . . . 10  |-  ( n  e.  ( ZZ>= `  1
)  ->  ( 1 ... ( n  + 
1 ) )  =  ( ( 1 ... n )  u.  {
( n  +  1 ) } ) )
6351, 62syl 17 . . . . . . . . 9  |-  ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  ->  ( 1 ... ( n  +  1 ) )  =  ( ( 1 ... n
)  u.  { ( n  +  1 ) } ) )
6461, 63esumeq1d 30097 . . . . . . . 8  |-  ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  -> Σ* k  e.  ( 1 ... ( n  + 
1 ) ) ( F `  k )  = Σ* k  e.  ( ( 1 ... n )  u.  { ( n  +  1 ) } ) ( F `  k ) )
65 nfcv 2764 . . . . . . . . 9  |-  F/_ k
( 1 ... n
)
66 nfcv 2764 . . . . . . . . 9  |-  F/_ k { ( n  + 
1 ) }
67 ovexd 6680 . . . . . . . . 9  |-  ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  ->  ( 1 ... n )  e.  _V )
68 snex 4908 . . . . . . . . . 10  |-  { ( n  +  1 ) }  e.  _V
6968a1i 11 . . . . . . . . 9  |-  ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  ->  { ( n  +  1 ) }  e.  _V )
70 fzp1disj 12399 . . . . . . . . . 10  |-  ( ( 1 ... n )  i^i  { ( n  +  1 ) } )  =  (/)
7170a1i 11 . . . . . . . . 9  |-  ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  ->  ( ( 1 ... n )  i^i 
{ ( n  + 
1 ) } )  =  (/) )
72 simplr 792 . . . . . . . . . 10  |-  ( ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  /\  k  e.  ( 1 ... n ) )  ->  F : NN
--> ( 0 [,] +oo ) )
73 fzssnn 12385 . . . . . . . . . . . 12  |-  ( 1  e.  NN  ->  (
1 ... n )  C_  NN )
7437, 73ax-mp 5 . . . . . . . . . . 11  |-  ( 1 ... n )  C_  NN
75 simpr 477 . . . . . . . . . . 11  |-  ( ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  /\  k  e.  ( 1 ... n ) )  ->  k  e.  ( 1 ... n
) )
7674, 75sseldi 3601 . . . . . . . . . 10  |-  ( ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  /\  k  e.  ( 1 ... n ) )  ->  k  e.  NN )
7772, 76ffvelrnd 6360 . . . . . . . . 9  |-  ( ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  /\  k  e.  ( 1 ... n ) )  ->  ( F `  k )  e.  ( 0 [,] +oo )
)
78 simplr 792 . . . . . . . . . 10  |-  ( ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  /\  k  e.  {
( n  +  1 ) } )  ->  F : NN --> ( 0 [,] +oo ) )
79 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  /\  k  e.  {
( n  +  1 ) } )  -> 
k  e.  { ( n  +  1 ) } )
80 velsn 4193 . . . . . . . . . . . 12  |-  ( k  e.  { ( n  +  1 ) }  <-> 
k  =  ( n  +  1 ) )
8179, 80sylib 208 . . . . . . . . . . 11  |-  ( ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  /\  k  e.  {
( n  +  1 ) } )  -> 
k  =  ( n  +  1 ) )
82 simpll 790 . . . . . . . . . . . 12  |-  ( ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  /\  k  e.  {
( n  +  1 ) } )  ->  n  e.  NN )
8382peano2nnd 11037 . . . . . . . . . . 11  |-  ( ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  /\  k  e.  {
( n  +  1 ) } )  -> 
( n  +  1 )  e.  NN )
8481, 83eqeltrd 2701 . . . . . . . . . 10  |-  ( ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  /\  k  e.  {
( n  +  1 ) } )  -> 
k  e.  NN )
8578, 84ffvelrnd 6360 . . . . . . . . 9  |-  ( ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  /\  k  e.  {
( n  +  1 ) } )  -> 
( F `  k
)  e.  ( 0 [,] +oo ) )
8661, 65, 66, 67, 69, 71, 77, 85esumsplit 30115 . . . . . . . 8  |-  ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  -> Σ* k  e.  ( ( 1 ... n )  u.  { ( n  +  1 ) } ) ( F `  k )  =  (Σ* k  e.  ( 1 ... n ) ( F `
 k ) +eΣ* k  e.  { ( n  +  1 ) }  ( F `  k ) ) )
87 nfcv 2764 . . . . . . . . . . 11  |-  F/_ x { ( n  + 
1 ) }
8825, 87, 66, 28, 31cbvesum 30104 . . . . . . . . . 10  |- Σ* k  e.  {
( n  +  1 ) }  ( F `
 k )  = Σ* x  e.  { ( n  +  1 ) }  ( F `  x
)
89 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  /\  x  =  ( n  +  1 ) )  ->  x  =  ( n  +  1
) )
9089fveq2d 6195 . . . . . . . . . . 11  |-  ( ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  /\  x  =  ( n  +  1 ) )  ->  ( F `  x )  =  ( F `  ( n  +  1 ) ) )
9149peano2nnd 11037 . . . . . . . . . . 11  |-  ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  ->  ( n  + 
1 )  e.  NN )
92 simpr 477 . . . . . . . . . . . 12  |-  ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  ->  F : NN --> ( 0 [,] +oo ) )
9392, 91ffvelrnd 6360 . . . . . . . . . . 11  |-  ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  ->  ( F `  ( n  +  1
) )  e.  ( 0 [,] +oo )
)
9490, 91, 93esumsn 30127 . . . . . . . . . 10  |-  ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  -> Σ* x  e.  { ( n  +  1 ) }  ( F `  x )  =  ( F `  ( n  +  1 ) ) )
9588, 94syl5eq 2668 . . . . . . . . 9  |-  ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  -> Σ* k  e.  { ( n  +  1 ) }  ( F `  k )  =  ( F `  ( n  +  1 ) ) )
9695oveq2d 6666 . . . . . . . 8  |-  ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  ->  (Σ* k  e.  ( 1 ... n ) ( F `  k ) +eΣ* k  e.  { ( n  +  1 ) }  ( F `  k ) )  =  (Σ* k  e.  ( 1 ... n ) ( F `  k ) +e ( F `
 ( n  + 
1 ) ) ) )
9764, 86, 963eqtrrd 2661 . . . . . . 7  |-  ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  ->  (Σ* k  e.  ( 1 ... n ) ( F `  k ) +e ( F `
 ( n  + 
1 ) ) )  = Σ* k  e.  ( 1 ... ( n  + 
1 ) ) ( F `  k ) )
9897adantr 481 . . . . . 6  |-  ( ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  /\ Σ* k  e.  ( 1 ... n ) ( F `  k )  =  (  seq 1
( +e ,  F ) `  n
) )  ->  (Σ* k  e.  ( 1 ... n
) ( F `  k ) +e
( F `  (
n  +  1 ) ) )  = Σ* k  e.  ( 1 ... (
n  +  1 ) ) ( F `  k ) )
9954, 56, 983eqtr2rd 2663 . . . . 5  |-  ( ( ( n  e.  NN  /\  F : NN --> ( 0 [,] +oo ) )  /\ Σ* k  e.  ( 1 ... n ) ( F `  k )  =  (  seq 1
( +e ,  F ) `  n
) )  -> Σ* k  e.  ( 1 ... ( n  +  1 ) ) ( F `  k
)  =  (  seq 1 ( +e ,  F ) `  (
n  +  1 ) ) )
10099exp31 630 . . . 4  |-  ( n  e.  NN  ->  ( F : NN --> ( 0 [,] +oo )  -> 
(Σ* k  e.  ( 1 ... n ) ( F `  k )  =  (  seq 1
( +e ,  F ) `  n
)  -> Σ* k  e.  ( 1 ... ( n  +  1 ) ) ( F `  k
)  =  (  seq 1 ( +e ,  F ) `  (
n  +  1 ) ) ) ) )
101100a2d 29 . . 3  |-  ( n  e.  NN  ->  (
( F : NN --> ( 0 [,] +oo )  -> Σ* k  e.  ( 1 ... n ) ( F `  k )  =  (  seq 1
( +e ,  F ) `  n
) )  ->  ( F : NN --> ( 0 [,] +oo )  -> Σ* k  e.  ( 1 ... (
n  +  1 ) ) ( F `  k )  =  (  seq 1 ( +e ,  F ) `
 ( n  + 
1 ) ) ) ) )
1026, 12, 18, 24, 48, 101nnind 11038 . 2  |-  ( N  e.  NN  ->  ( F : NN --> ( 0 [,] +oo )  -> Σ* k  e.  ( 1 ... N
) ( F `  k )  =  (  seq 1 ( +e ,  F ) `
 N ) ) )
103102impcom 446 1  |-  ( ( F : NN --> ( 0 [,] +oo )  /\  N  e.  NN )  -> Σ* k  e.  ( 1 ... N ) ( F `
 k )  =  (  seq 1 ( +e ,  F
) `  N )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   F/_wnfc 2751   _Vcvv 3200    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   +oocpnf 10071   NNcn 11020   ZZcz 11377   ZZ>=cuz 11687   +ecxad 11944   [,]cicc 12178   ...cfz 12326    seqcseq 12801  Σ*cesum 30089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-ordt 16161  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-ps 17200  df-tsr 17201  df-plusf 17241  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-subrg 18778  df-abv 18817  df-lmod 18865  df-scaf 18866  df-sra 19172  df-rgmod 19173  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-tmd 21876  df-tgp 21877  df-tsms 21930  df-trg 21963  df-xms 22125  df-ms 22126  df-tms 22127  df-nm 22387  df-ngp 22388  df-nrg 22390  df-nlm 22391  df-ii 22680  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-esum 30090
This theorem is referenced by:  esumfsup  30132  esumsup  30151
  Copyright terms: Public domain W3C validator