Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonhoire Structured version   Visualization version   Unicode version

Theorem vonhoire 40886
Description: The Lebesgue measure of a n-dimensional half-open interval is a real number. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonhoire.n  |-  F/ k
ph
vonhoire.x  |-  ( ph  ->  X  e.  Fin )
vonhoire.a  |-  ( (
ph  /\  k  e.  X )  ->  A  e.  RR )
vonhoire.b  |-  ( (
ph  /\  k  e.  X )  ->  B  e.  RR )
Assertion
Ref Expression
vonhoire  |-  ( ph  ->  ( (voln `  X
) `  X_ k  e.  X  ( A [,) B ) )  e.  RR )
Distinct variable group:    k, X
Allowed substitution hints:    ph( k)    A( k)    B( k)

Proof of Theorem vonhoire
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . 6  |-  ( X  =  (/)  ->  (voln `  X )  =  (voln `  (/) ) )
21fveq1d 6193 . . . . 5  |-  ( X  =  (/)  ->  ( (voln `  X ) `  X_ k  e.  X  ( A [,) B ) )  =  ( (voln `  (/) ) `  X_ k  e.  X  ( A [,) B ) ) )
32adantl 482 . . . 4  |-  ( (
ph  /\  X  =  (/) )  ->  ( (voln `  X ) `  X_ k  e.  X  ( A [,) B ) )  =  ( (voln `  (/) ) `  X_ k  e.  X  ( A [,) B ) ) )
4 ixpeq1 7919 . . . . . . 7  |-  ( X  =  (/)  ->  X_ k  e.  X  ( A [,) B )  =  X_ k  e.  (/)  ( A [,) B ) )
54adantl 482 . . . . . 6  |-  ( (
ph  /\  X  =  (/) )  ->  X_ k  e.  X  ( A [,) B )  =  X_ k  e.  (/)  ( A [,) B ) )
6 vonhoire.n . . . . . . . 8  |-  F/ k
ph
7 0fin 8188 . . . . . . . . 9  |-  (/)  e.  Fin
87a1i 11 . . . . . . . 8  |-  ( ph  -> 
(/)  e.  Fin )
9 eqid 2622 . . . . . . . 8  |-  dom  (voln `  (/) )  =  dom  (voln `  (/) )
10 noel 3919 . . . . . . . . . 10  |-  -.  k  e.  (/)
1110pm2.21i 116 . . . . . . . . 9  |-  ( k  e.  (/)  ->  A  e.  RR )
1211adantl 482 . . . . . . . 8  |-  ( (
ph  /\  k  e.  (/) )  ->  A  e.  RR )
1310pm2.21i 116 . . . . . . . . 9  |-  ( k  e.  (/)  ->  B  e.  RR )
1413adantl 482 . . . . . . . 8  |-  ( (
ph  /\  k  e.  (/) )  ->  B  e.  RR )
156, 8, 9, 12, 14hoimbl2 40879 . . . . . . 7  |-  ( ph  -> 
X_ k  e.  (/)  ( A [,) B )  e.  dom  (voln `  (/) ) )
1615adantr 481 . . . . . 6  |-  ( (
ph  /\  X  =  (/) )  ->  X_ k  e.  (/)  ( A [,) B
)  e.  dom  (voln `  (/) ) )
175, 16eqeltrd 2701 . . . . 5  |-  ( (
ph  /\  X  =  (/) )  ->  X_ k  e.  X  ( A [,) B )  e.  dom  (voln `  (/) ) )
1817von0val 40885 . . . 4  |-  ( (
ph  /\  X  =  (/) )  ->  ( (voln `  (/) ) `  X_ k  e.  X  ( A [,) B ) )  =  0 )
193, 18eqtrd 2656 . . 3  |-  ( (
ph  /\  X  =  (/) )  ->  ( (voln `  X ) `  X_ k  e.  X  ( A [,) B ) )  =  0 )
20 0red 10041 . . 3  |-  ( (
ph  /\  X  =  (/) )  ->  0  e.  RR )
2119, 20eqeltrd 2701 . 2  |-  ( (
ph  /\  X  =  (/) )  ->  ( (voln `  X ) `  X_ k  e.  X  ( A [,) B ) )  e.  RR )
22 neqne 2802 . . . 4  |-  ( -.  X  =  (/)  ->  X  =/=  (/) )
2322adantl 482 . . 3  |-  ( (
ph  /\  -.  X  =  (/) )  ->  X  =/=  (/) )
24 simpr 477 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  X )  ->  j  e.  X )
25 nfv 1843 . . . . . . . . . . . . . 14  |-  F/ k  j  e.  X
266, 25nfan 1828 . . . . . . . . . . . . 13  |-  F/ k ( ph  /\  j  e.  X )
27 nfcv 2764 . . . . . . . . . . . . . . 15  |-  F/_ k
j
2827nfcsb1 3548 . . . . . . . . . . . . . 14  |-  F/_ k [_ j  /  k ]_ A
2928nfel1 2779 . . . . . . . . . . . . 13  |-  F/ k
[_ j  /  k ]_ A  e.  RR
3026, 29nfim 1825 . . . . . . . . . . . 12  |-  F/ k ( ( ph  /\  j  e.  X )  ->  [_ j  /  k ]_ A  e.  RR )
31 eleq1 2689 . . . . . . . . . . . . . 14  |-  ( k  =  j  ->  (
k  e.  X  <->  j  e.  X ) )
3231anbi2d 740 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  (
( ph  /\  k  e.  X )  <->  ( ph  /\  j  e.  X ) ) )
33 csbeq1a 3542 . . . . . . . . . . . . . 14  |-  ( k  =  j  ->  A  =  [_ j  /  k ]_ A )
3433eleq1d 2686 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  ( A  e.  RR  <->  [_ j  / 
k ]_ A  e.  RR ) )
3532, 34imbi12d 334 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
( ( ph  /\  k  e.  X )  ->  A  e.  RR )  <-> 
( ( ph  /\  j  e.  X )  ->  [_ j  /  k ]_ A  e.  RR ) ) )
36 vonhoire.a . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  X )  ->  A  e.  RR )
3730, 35, 36chvar 2262 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  X )  ->  [_ j  /  k ]_ A  e.  RR )
38 eqid 2622 . . . . . . . . . . . 12  |-  ( k  e.  X  |->  A )  =  ( k  e.  X  |->  A )
3927, 28, 33, 38fvmptf 6301 . . . . . . . . . . 11  |-  ( ( j  e.  X  /\  [_ j  /  k ]_ A  e.  RR )  ->  ( ( k  e.  X  |->  A ) `  j )  =  [_ j  /  k ]_ A
)
4024, 37, 39syl2anc 693 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  X )  ->  (
( k  e.  X  |->  A ) `  j
)  =  [_ j  /  k ]_ A
)
4127nfcsb1 3548 . . . . . . . . . . . . . 14  |-  F/_ k [_ j  /  k ]_ B
42 nfcv 2764 . . . . . . . . . . . . . 14  |-  F/_ k RR
4341, 42nfel 2777 . . . . . . . . . . . . 13  |-  F/ k
[_ j  /  k ]_ B  e.  RR
4426, 43nfim 1825 . . . . . . . . . . . 12  |-  F/ k ( ( ph  /\  j  e.  X )  ->  [_ j  /  k ]_ B  e.  RR )
45 csbeq1a 3542 . . . . . . . . . . . . . 14  |-  ( k  =  j  ->  B  =  [_ j  /  k ]_ B )
4645eleq1d 2686 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  ( B  e.  RR  <->  [_ j  / 
k ]_ B  e.  RR ) )
4732, 46imbi12d 334 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
( ( ph  /\  k  e.  X )  ->  B  e.  RR )  <-> 
( ( ph  /\  j  e.  X )  ->  [_ j  /  k ]_ B  e.  RR ) ) )
48 vonhoire.b . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  X )  ->  B  e.  RR )
4944, 47, 48chvar 2262 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  X )  ->  [_ j  /  k ]_ B  e.  RR )
50 eqid 2622 . . . . . . . . . . . 12  |-  ( k  e.  X  |->  B )  =  ( k  e.  X  |->  B )
5127, 41, 45, 50fvmptf 6301 . . . . . . . . . . 11  |-  ( ( j  e.  X  /\  [_ j  /  k ]_ B  e.  RR )  ->  ( ( k  e.  X  |->  B ) `  j )  =  [_ j  /  k ]_ B
)
5224, 49, 51syl2anc 693 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  X )  ->  (
( k  e.  X  |->  B ) `  j
)  =  [_ j  /  k ]_ B
)
5340, 52oveq12d 6668 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  X )  ->  (
( ( k  e.  X  |->  A ) `  j ) [,) (
( k  e.  X  |->  B ) `  j
) )  =  (
[_ j  /  k ]_ A [,) [_ j  /  k ]_ B
) )
5453ixpeq2dva 7923 . . . . . . . 8  |-  ( ph  -> 
X_ j  e.  X  ( ( ( k  e.  X  |->  A ) `
 j ) [,) ( ( k  e.  X  |->  B ) `  j ) )  = 
X_ j  e.  X  ( [_ j  /  k ]_ A [,) [_ j  /  k ]_ B
) )
55 nfcv 2764 . . . . . . . . . . 11  |-  F/_ j
( A [,) B
)
56 nfcv 2764 . . . . . . . . . . . 12  |-  F/_ k [,)
5728, 56, 41nfov 6676 . . . . . . . . . . 11  |-  F/_ k
( [_ j  /  k ]_ A [,) [_ j  /  k ]_ B
)
5833, 45oveq12d 6668 . . . . . . . . . . 11  |-  ( k  =  j  ->  ( A [,) B )  =  ( [_ j  / 
k ]_ A [,) [_ j  /  k ]_ B
) )
5955, 57, 58cbvixp 7925 . . . . . . . . . 10  |-  X_ k  e.  X  ( A [,) B )  =  X_ j  e.  X  ( [_ j  /  k ]_ A [,) [_ j  /  k ]_ B
)
6059eqcomi 2631 . . . . . . . . 9  |-  X_ j  e.  X  ( [_ j  /  k ]_ A [,) [_ j  /  k ]_ B )  =  X_ k  e.  X  ( A [,) B )
6160a1i 11 . . . . . . . 8  |-  ( ph  -> 
X_ j  e.  X  ( [_ j  /  k ]_ A [,) [_ j  /  k ]_ B
)  =  X_ k  e.  X  ( A [,) B ) )
6254, 61eqtr2d 2657 . . . . . . 7  |-  ( ph  -> 
X_ k  e.  X  ( A [,) B )  =  X_ j  e.  X  ( ( ( k  e.  X  |->  A ) `
 j ) [,) ( ( k  e.  X  |->  B ) `  j ) ) )
6362fveq2d 6195 . . . . . 6  |-  ( ph  ->  ( (voln `  X
) `  X_ k  e.  X  ( A [,) B ) )  =  ( (voln `  X
) `  X_ j  e.  X  ( ( ( k  e.  X  |->  A ) `  j ) [,) ( ( k  e.  X  |->  B ) `
 j ) ) ) )
6463adantr 481 . . . . 5  |-  ( (
ph  /\  X  =/=  (/) )  ->  ( (voln `  X ) `  X_ k  e.  X  ( A [,) B ) )  =  ( (voln `  X
) `  X_ j  e.  X  ( ( ( k  e.  X  |->  A ) `  j ) [,) ( ( k  e.  X  |->  B ) `
 j ) ) ) )
65 vonhoire.x . . . . . . 7  |-  ( ph  ->  X  e.  Fin )
6665adantr 481 . . . . . 6  |-  ( (
ph  /\  X  =/=  (/) )  ->  X  e.  Fin )
67 simpr 477 . . . . . 6  |-  ( (
ph  /\  X  =/=  (/) )  ->  X  =/=  (/) )
686, 36, 38fmptdf 6387 . . . . . . 7  |-  ( ph  ->  ( k  e.  X  |->  A ) : X --> RR )
6968adantr 481 . . . . . 6  |-  ( (
ph  /\  X  =/=  (/) )  ->  ( k  e.  X  |->  A ) : X --> RR )
706, 48, 50fmptdf 6387 . . . . . . 7  |-  ( ph  ->  ( k  e.  X  |->  B ) : X --> RR )
7170adantr 481 . . . . . 6  |-  ( (
ph  /\  X  =/=  (/) )  ->  ( k  e.  X  |->  B ) : X --> RR )
72 eqid 2622 . . . . . 6  |-  X_ j  e.  X  ( (
( k  e.  X  |->  A ) `  j
) [,) ( ( k  e.  X  |->  B ) `  j ) )  =  X_ j  e.  X  ( (
( k  e.  X  |->  A ) `  j
) [,) ( ( k  e.  X  |->  B ) `  j ) )
7366, 67, 69, 71, 72vonn0hoi 40884 . . . . 5  |-  ( (
ph  /\  X  =/=  (/) )  ->  ( (voln `  X ) `  X_ j  e.  X  ( (
( k  e.  X  |->  A ) `  j
) [,) ( ( k  e.  X  |->  B ) `  j ) ) )  =  prod_ j  e.  X  ( vol `  ( ( ( k  e.  X  |->  A ) `
 j ) [,) ( ( k  e.  X  |->  B ) `  j ) ) ) )
7464, 73eqtrd 2656 . . . 4  |-  ( (
ph  /\  X  =/=  (/) )  ->  ( (voln `  X ) `  X_ k  e.  X  ( A [,) B ) )  = 
prod_ j  e.  X  ( vol `  ( ( ( k  e.  X  |->  A ) `  j
) [,) ( ( k  e.  X  |->  B ) `  j ) ) ) )
7540, 37eqeltrd 2701 . . . . . . 7  |-  ( (
ph  /\  j  e.  X )  ->  (
( k  e.  X  |->  A ) `  j
)  e.  RR )
7652, 49eqeltrd 2701 . . . . . . 7  |-  ( (
ph  /\  j  e.  X )  ->  (
( k  e.  X  |->  B ) `  j
)  e.  RR )
77 volicore 40795 . . . . . . 7  |-  ( ( ( ( k  e.  X  |->  A ) `  j )  e.  RR  /\  ( ( k  e.  X  |->  B ) `  j )  e.  RR )  ->  ( vol `  (
( ( k  e.  X  |->  A ) `  j ) [,) (
( k  e.  X  |->  B ) `  j
) ) )  e.  RR )
7875, 76, 77syl2anc 693 . . . . . 6  |-  ( (
ph  /\  j  e.  X )  ->  ( vol `  ( ( ( k  e.  X  |->  A ) `  j ) [,) ( ( k  e.  X  |->  B ) `
 j ) ) )  e.  RR )
7965, 78fprodrecl 14683 . . . . 5  |-  ( ph  ->  prod_ j  e.  X  ( vol `  ( ( ( k  e.  X  |->  A ) `  j
) [,) ( ( k  e.  X  |->  B ) `  j ) ) )  e.  RR )
8079adantr 481 . . . 4  |-  ( (
ph  /\  X  =/=  (/) )  ->  prod_ j  e.  X  ( vol `  (
( ( k  e.  X  |->  A ) `  j ) [,) (
( k  e.  X  |->  B ) `  j
) ) )  e.  RR )
8174, 80eqeltrd 2701 . . 3  |-  ( (
ph  /\  X  =/=  (/) )  ->  ( (voln `  X ) `  X_ k  e.  X  ( A [,) B ) )  e.  RR )
8223, 81syldan 487 . 2  |-  ( (
ph  /\  -.  X  =  (/) )  ->  (
(voln `  X ) `  X_ k  e.  X  ( A [,) B ) )  e.  RR )
8321, 82pm2.61dan 832 1  |-  ( ph  ->  ( (voln `  X
) `  X_ k  e.  X  ( A [,) B ) )  e.  RR )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990    =/= wne 2794   [_csb 3533   (/)c0 3915    |-> cmpt 4729   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650   X_cixp 7908   Fincfn 7955   RRcr 9935   0cc0 9936   [,)cico 12177   prod_cprod 14635   volcvol 23232  volncvoln 40752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-prod 14636  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-0g 16102  df-topgen 16104  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-subg 17591  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234  df-salg 40529  df-sumge0 40580  df-mea 40667  df-ome 40704  df-caragen 40706  df-ovoln 40751  df-voln 40753
This theorem is referenced by:  vonioolem2  40895  vonicclem2  40898
  Copyright terms: Public domain W3C validator