MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephval2 Structured version   Visualization version   Unicode version

Theorem alephval2 9394
Description: An alternate way to express the value of the aleph function for nonzero arguments. Theorem 64 of [Suppes] p. 229. (Contributed by NM, 15-Nov-2003.)
Assertion
Ref Expression
alephval2  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( aleph `  A )  =  |^| { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } )
Distinct variable group:    x, y, A

Proof of Theorem alephval2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 alephordi 8897 . . . . . 6  |-  ( A  e.  On  ->  (
y  e.  A  -> 
( aleph `  y )  ~<  ( aleph `  A )
) )
21ralrimiv 2965 . . . . 5  |-  ( A  e.  On  ->  A. y  e.  A  ( aleph `  y )  ~<  ( aleph `  A ) )
3 alephon 8892 . . . . 5  |-  ( aleph `  A )  e.  On
42, 3jctil 560 . . . 4  |-  ( A  e.  On  ->  (
( aleph `  A )  e.  On  /\  A. y  e.  A  ( aleph `  y )  ~<  ( aleph `  A ) ) )
5 breq2 4657 . . . . . 6  |-  ( x  =  ( aleph `  A
)  ->  ( ( aleph `  y )  ~<  x 
<->  ( aleph `  y )  ~<  ( aleph `  A )
) )
65ralbidv 2986 . . . . 5  |-  ( x  =  ( aleph `  A
)  ->  ( A. y  e.  A  ( aleph `  y )  ~<  x 
<-> 
A. y  e.  A  ( aleph `  y )  ~<  ( aleph `  A )
) )
76elrab 3363 . . . 4  |-  ( (
aleph `  A )  e. 
{ x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x }  <->  ( ( aleph `  A )  e.  On  /\  A. y  e.  A  ( aleph `  y )  ~<  ( aleph `  A ) ) )
84, 7sylibr 224 . . 3  |-  ( A  e.  On  ->  ( aleph `  A )  e. 
{ x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } )
98adantr 481 . 2  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( aleph `  A )  e.  { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } )
10 cardsdomelir 8799 . . . . 5  |-  ( z  e.  ( card `  ( aleph `  A ) )  ->  z  ~<  ( aleph `  A ) )
11 alephcard 8893 . . . . . 6  |-  ( card `  ( aleph `  A )
)  =  ( aleph `  A )
1211eqcomi 2631 . . . . 5  |-  ( aleph `  A )  =  (
card `  ( aleph `  A
) )
1310, 12eleq2s 2719 . . . 4  |-  ( z  e.  ( aleph `  A
)  ->  z  ~<  (
aleph `  A ) )
14 omex 8540 . . . . . 6  |-  om  e.  _V
15 vex 3203 . . . . . 6  |-  z  e. 
_V
16 entri3 9381 . . . . . 6  |-  ( ( om  e.  _V  /\  z  e.  _V )  ->  ( om  ~<_  z  \/  z  ~<_  om ) )
1714, 15, 16mp2an 708 . . . . 5  |-  ( om  ~<_  z  \/  z  ~<_  om )
18 carddom 9376 . . . . . . . . . 10  |-  ( ( om  e.  _V  /\  z  e.  _V )  ->  ( ( card `  om )  C_  ( card `  z
)  <->  om  ~<_  z ) )
1914, 15, 18mp2an 708 . . . . . . . . 9  |-  ( (
card `  om )  C_  ( card `  z )  <->  om  ~<_  z )
20 cardom 8812 . . . . . . . . . 10  |-  ( card `  om )  =  om
2120sseq1i 3629 . . . . . . . . 9  |-  ( (
card `  om )  C_  ( card `  z )  <->  om  C_  ( card `  z
) )
2219, 21bitr3i 266 . . . . . . . 8  |-  ( om  ~<_  z  <->  om  C_  ( card `  z ) )
23 cardidm 8785 . . . . . . . . . 10  |-  ( card `  ( card `  z
) )  =  (
card `  z )
24 cardalephex 8913 . . . . . . . . . 10  |-  ( om  C_  ( card `  z
)  ->  ( ( card `  ( card `  z
) )  =  (
card `  z )  <->  E. x  e.  On  ( card `  z )  =  ( aleph `  x )
) )
2523, 24mpbii 223 . . . . . . . . 9  |-  ( om  C_  ( card `  z
)  ->  E. x  e.  On  ( card `  z
)  =  ( aleph `  x ) )
26 alephord 8898 . . . . . . . . . . . . . 14  |-  ( ( x  e.  On  /\  A  e.  On )  ->  ( x  e.  A  <->  (
aleph `  x )  ~< 
( aleph `  A )
) )
2726ancoms 469 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( x  e.  A  <->  (
aleph `  x )  ~< 
( aleph `  A )
) )
2815cardid 9369 . . . . . . . . . . . . . . 15  |-  ( card `  z )  ~~  z
29 sdomen1 8104 . . . . . . . . . . . . . . 15  |-  ( (
card `  z )  ~~  z  ->  ( (
card `  z )  ~<  ( aleph `  A )  <->  z 
~<  ( aleph `  A )
) )
3028, 29ax-mp 5 . . . . . . . . . . . . . 14  |-  ( (
card `  z )  ~<  ( aleph `  A )  <->  z 
~<  ( aleph `  A )
)
31 breq1 4656 . . . . . . . . . . . . . 14  |-  ( (
card `  z )  =  ( aleph `  x
)  ->  ( ( card `  z )  ~< 
( aleph `  A )  <->  (
aleph `  x )  ~< 
( aleph `  A )
) )
3230, 31syl5rbbr 275 . . . . . . . . . . . . 13  |-  ( (
card `  z )  =  ( aleph `  x
)  ->  ( ( aleph `  x )  ~< 
( aleph `  A )  <->  z 
~<  ( aleph `  A )
) )
3327, 32sylan9bb 736 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  x  e.  On )  /\  ( card `  z
)  =  ( aleph `  x ) )  -> 
( x  e.  A  <->  z 
~<  ( aleph `  A )
) )
34 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( y  =  x  ->  ( aleph `  y )  =  ( aleph `  x )
)
3534breq1d 4663 . . . . . . . . . . . . . . . 16  |-  ( y  =  x  ->  (
( aleph `  y )  ~<  z  <->  ( aleph `  x
)  ~<  z ) )
3635rspcv 3305 . . . . . . . . . . . . . . 15  |-  ( x  e.  A  ->  ( A. y  e.  A  ( aleph `  y )  ~<  z  ->  ( aleph `  x )  ~<  z
) )
37 sdomirr 8097 . . . . . . . . . . . . . . . 16  |-  -.  ( aleph `  x )  ~< 
( aleph `  x )
38 sdomen2 8105 . . . . . . . . . . . . . . . . . 18  |-  ( (
card `  z )  ~~  z  ->  ( (
aleph `  x )  ~< 
( card `  z )  <->  (
aleph `  x )  ~< 
z ) )
3928, 38ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( (
aleph `  x )  ~< 
( card `  z )  <->  (
aleph `  x )  ~< 
z )
40 breq2 4657 . . . . . . . . . . . . . . . . 17  |-  ( (
card `  z )  =  ( aleph `  x
)  ->  ( ( aleph `  x )  ~< 
( card `  z )  <->  (
aleph `  x )  ~< 
( aleph `  x )
) )
4139, 40syl5bbr 274 . . . . . . . . . . . . . . . 16  |-  ( (
card `  z )  =  ( aleph `  x
)  ->  ( ( aleph `  x )  ~< 
z  <->  ( aleph `  x
)  ~<  ( aleph `  x
) ) )
4237, 41mtbiri 317 . . . . . . . . . . . . . . 15  |-  ( (
card `  z )  =  ( aleph `  x
)  ->  -.  ( aleph `  x )  ~< 
z )
4336, 42nsyli 155 . . . . . . . . . . . . . 14  |-  ( x  e.  A  ->  (
( card `  z )  =  ( aleph `  x
)  ->  -.  A. y  e.  A  ( aleph `  y )  ~<  z
) )
4443com12 32 . . . . . . . . . . . . 13  |-  ( (
card `  z )  =  ( aleph `  x
)  ->  ( x  e.  A  ->  -.  A. y  e.  A  ( aleph `  y )  ~< 
z ) )
4544adantl 482 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  x  e.  On )  /\  ( card `  z
)  =  ( aleph `  x ) )  -> 
( x  e.  A  ->  -.  A. y  e.  A  ( aleph `  y
)  ~<  z ) )
4633, 45sylbird 250 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  x  e.  On )  /\  ( card `  z
)  =  ( aleph `  x ) )  -> 
( z  ~<  ( aleph `  A )  ->  -.  A. y  e.  A  ( aleph `  y )  ~<  z ) )
4746exp31 630 . . . . . . . . . 10  |-  ( A  e.  On  ->  (
x  e.  On  ->  ( ( card `  z
)  =  ( aleph `  x )  ->  (
z  ~<  ( aleph `  A
)  ->  -.  A. y  e.  A  ( aleph `  y )  ~<  z
) ) ) )
4847rexlimdv 3030 . . . . . . . . 9  |-  ( A  e.  On  ->  ( E. x  e.  On  ( card `  z )  =  ( aleph `  x
)  ->  ( z  ~<  ( aleph `  A )  ->  -.  A. y  e.  A  ( aleph `  y
)  ~<  z ) ) )
4925, 48syl5 34 . . . . . . . 8  |-  ( A  e.  On  ->  ( om  C_  ( card `  z
)  ->  ( z  ~<  ( aleph `  A )  ->  -.  A. y  e.  A  ( aleph `  y
)  ~<  z ) ) )
5022, 49syl5bi 232 . . . . . . 7  |-  ( A  e.  On  ->  ( om 
~<_  z  ->  ( z 
~<  ( aleph `  A )  ->  -.  A. y  e.  A  ( aleph `  y
)  ~<  z ) ) )
5150adantr 481 . . . . . 6  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( om  ~<_  z  -> 
( z  ~<  ( aleph `  A )  ->  -.  A. y  e.  A  ( aleph `  y )  ~<  z ) ) )
52 ne0i 3921 . . . . . . . . . . . 12  |-  ( (/)  e.  A  ->  A  =/=  (/) )
53 onelon 5748 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  On  /\  y  e.  A )  ->  y  e.  On )
54 alephgeom 8905 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  On  <->  om  C_  ( aleph `  y ) )
55 alephon 8892 . . . . . . . . . . . . . . . . . . 19  |-  ( aleph `  y )  e.  On
56 ssdomg 8001 . . . . . . . . . . . . . . . . . . 19  |-  ( (
aleph `  y )  e.  On  ->  ( om  C_  ( aleph `  y )  ->  om  ~<_  ( aleph `  y
) ) )
5755, 56ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  ( om  C_  ( aleph `  y )  ->  om  ~<_  ( aleph `  y
) )
5854, 57sylbi 207 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  On  ->  om  ~<_  ( aleph `  y ) )
59 domtr 8009 . . . . . . . . . . . . . . . . 17  |-  ( ( z  ~<_  om  /\  om  ~<_  ( aleph `  y ) )  -> 
z  ~<_  ( aleph `  y
) )
6058, 59sylan2 491 . . . . . . . . . . . . . . . 16  |-  ( ( z  ~<_  om  /\  y  e.  On )  ->  z  ~<_  ( aleph `  y )
)
61 domnsym 8086 . . . . . . . . . . . . . . . 16  |-  ( z  ~<_  ( aleph `  y )  ->  -.  ( aleph `  y
)  ~<  z )
6260, 61syl 17 . . . . . . . . . . . . . . 15  |-  ( ( z  ~<_  om  /\  y  e.  On )  ->  -.  ( aleph `  y )  ~<  z )
6353, 62sylan2 491 . . . . . . . . . . . . . 14  |-  ( ( z  ~<_  om  /\  ( A  e.  On  /\  y  e.  A ) )  ->  -.  ( aleph `  y )  ~<  z )
6463expr 643 . . . . . . . . . . . . 13  |-  ( ( z  ~<_  om  /\  A  e.  On )  ->  (
y  e.  A  ->  -.  ( aleph `  y )  ~<  z ) )
6564ralrimiv 2965 . . . . . . . . . . . 12  |-  ( ( z  ~<_  om  /\  A  e.  On )  ->  A. y  e.  A  -.  ( aleph `  y )  ~< 
z )
66 r19.2z 4060 . . . . . . . . . . . . 13  |-  ( ( A  =/=  (/)  /\  A. y  e.  A  -.  ( aleph `  y )  ~<  z )  ->  E. y  e.  A  -.  ( aleph `  y )  ~< 
z )
6766ex 450 . . . . . . . . . . . 12  |-  ( A  =/=  (/)  ->  ( A. y  e.  A  -.  ( aleph `  y )  ~<  z  ->  E. y  e.  A  -.  ( aleph `  y )  ~< 
z ) )
6852, 65, 67syl2im 40 . . . . . . . . . . 11  |-  ( (/)  e.  A  ->  ( ( z  ~<_  om  /\  A  e.  On )  ->  E. y  e.  A  -.  ( aleph `  y )  ~< 
z ) )
69 rexnal 2995 . . . . . . . . . . 11  |-  ( E. y  e.  A  -.  ( aleph `  y )  ~<  z  <->  -.  A. y  e.  A  ( aleph `  y )  ~<  z
)
7068, 69syl6ib 241 . . . . . . . . . 10  |-  ( (/)  e.  A  ->  ( ( z  ~<_  om  /\  A  e.  On )  ->  -.  A. y  e.  A  (
aleph `  y )  ~< 
z ) )
7170com12 32 . . . . . . . . 9  |-  ( ( z  ~<_  om  /\  A  e.  On )  ->  ( (/) 
e.  A  ->  -.  A. y  e.  A  (
aleph `  y )  ~< 
z ) )
7271expimpd 629 . . . . . . . 8  |-  ( z  ~<_  om  ->  ( ( A  e.  On  /\  (/)  e.  A
)  ->  -.  A. y  e.  A  ( aleph `  y )  ~<  z
) )
7372a1d 25 . . . . . . 7  |-  ( z  ~<_  om  ->  ( z  ~<  ( aleph `  A )  ->  ( ( A  e.  On  /\  (/)  e.  A
)  ->  -.  A. y  e.  A  ( aleph `  y )  ~<  z
) ) )
7473com3r 87 . . . . . 6  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( z  ~<_  om  ->  ( z  ~<  ( aleph `  A )  ->  -.  A. y  e.  A  (
aleph `  y )  ~< 
z ) ) )
7551, 74jaod 395 . . . . 5  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( ( om  ~<_  z  \/  z  ~<_  om )  ->  (
z  ~<  ( aleph `  A
)  ->  -.  A. y  e.  A  ( aleph `  y )  ~<  z
) ) )
7617, 75mpi 20 . . . 4  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( z  ~<  ( aleph `  A )  ->  -.  A. y  e.  A  ( aleph `  y )  ~<  z ) )
77 breq2 4657 . . . . . . . 8  |-  ( x  =  z  ->  (
( aleph `  y )  ~<  x  <->  ( aleph `  y
)  ~<  z ) )
7877ralbidv 2986 . . . . . . 7  |-  ( x  =  z  ->  ( A. y  e.  A  ( aleph `  y )  ~<  x  <->  A. y  e.  A  ( aleph `  y )  ~<  z ) )
7978elrab 3363 . . . . . 6  |-  ( z  e.  { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } 
<->  ( z  e.  On  /\ 
A. y  e.  A  ( aleph `  y )  ~<  z ) )
8079simprbi 480 . . . . 5  |-  ( z  e.  { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x }  ->  A. y  e.  A  ( aleph `  y )  ~<  z )
8180con3i 150 . . . 4  |-  ( -. 
A. y  e.  A  ( aleph `  y )  ~<  z  ->  -.  z  e.  { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } )
8213, 76, 81syl56 36 . . 3  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( z  e.  (
aleph `  A )  ->  -.  z  e.  { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } ) )
8382ralrimiv 2965 . 2  |-  ( ( A  e.  On  /\  (/) 
e.  A )  ->  A. z  e.  ( aleph `  A )  -.  z  e.  { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } )
84 ssrab2 3687 . . 3  |-  { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x }  C_  On
85 oneqmini 5776 . . 3  |-  ( { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x }  C_  On  ->  ( ( ( aleph `  A )  e.  {
x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x }  /\  A. z  e.  ( aleph `  A )  -.  z  e.  { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } )  -> 
( aleph `  A )  =  |^| { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } ) )
8684, 85ax-mp 5 . 2  |-  ( ( ( aleph `  A )  e.  { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x }  /\  A. z  e.  ( aleph `  A )  -.  z  e.  { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } )  -> 
( aleph `  A )  =  |^| { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } )
879, 83, 86syl2anc 693 1  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( aleph `  A )  =  |^| { x  e.  On  |  A. y  e.  A  ( aleph `  y )  ~<  x } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   |^|cint 4475   class class class wbr 4653   Oncon0 5723   ` cfv 5888   omcom 7065    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954   cardccrd 8761   alephcale 8762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-har 8463  df-card 8765  df-aleph 8766  df-ac 8939
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator