Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sltres Structured version   Visualization version   Unicode version

Theorem sltres 31815
Description: If the restrictions of two surreals to a given ordinal obey surreal less than, then so do the two surreals themselves. (Contributed by Scott Fenton, 4-Sep-2011.)
Assertion
Ref Expression
sltres  |-  ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  ->  (
( A  |`  X ) <s ( B  |`  X )  ->  A <s B ) )

Proof of Theorem sltres
Dummy variables  a  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noreson 31813 . . . . . . 7  |-  ( ( A  e.  No  /\  X  e.  On )  ->  ( A  |`  X )  e.  No )
213adant2 1080 . . . . . 6  |-  ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  ->  ( A  |`  X )  e.  No )
3 noreson 31813 . . . . . . 7  |-  ( ( B  e.  No  /\  X  e.  On )  ->  ( B  |`  X )  e.  No )
433adant1 1079 . . . . . 6  |-  ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  ->  ( B  |`  X )  e.  No )
5 sltintdifex 31814 . . . . . . 7  |-  ( ( ( A  |`  X )  e.  No  /\  ( B  |`  X )  e.  No )  ->  (
( A  |`  X ) <s ( B  |`  X )  ->  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) }  e.  _V ) )
6 onintrab 7001 . . . . . . 7  |-  ( |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  _V 
<-> 
|^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  On )
75, 6syl6ib 241 . . . . . 6  |-  ( ( ( A  |`  X )  e.  No  /\  ( B  |`  X )  e.  No )  ->  (
( A  |`  X ) <s ( B  |`  X )  ->  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) }  e.  On ) )
82, 4, 7syl2anc 693 . . . . 5  |-  ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  ->  (
( A  |`  X ) <s ( B  |`  X )  ->  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) }  e.  On ) )
98imp 445 . . . 4  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( A  |`  X ) <s ( B  |`  X ) )  ->  |^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  On )
10 simpl3 1066 . . . . . . . 8  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( A  |`  X ) <s ( B  |`  X ) )  ->  X  e.  On )
11 sltval2 31809 . . . . . . . . . . . 12  |-  ( ( ( A  |`  X )  e.  No  /\  ( B  |`  X )  e.  No )  ->  (
( A  |`  X ) <s ( B  |`  X )  <->  ( ( A  |`  X ) `  |^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( ( B  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } ) ) )
122, 4, 11syl2anc 693 . . . . . . . . . . 11  |-  ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  ->  (
( A  |`  X ) <s ( B  |`  X )  <->  ( ( A  |`  X ) `  |^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( ( B  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } ) ) )
13 fvex 6201 . . . . . . . . . . . . 13  |-  ( ( A  |`  X ) `  |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  e.  _V
14 fvex 6201 . . . . . . . . . . . . 13  |-  ( ( B  |`  X ) `  |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  e.  _V
1513, 14brtp 31639 . . . . . . . . . . . 12  |-  ( ( ( A  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } ) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( ( B  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  <-> 
( ( ( ( A  |`  X ) `  |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  1o  /\  ( ( B  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  (/) )  \/  (
( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  1o  /\  (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  2o )  \/  ( ( ( A  |`  X ) `  |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  (/)  /\  (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  2o ) ) )
16 1n0 7575 . . . . . . . . . . . . . . . . . 18  |-  1o  =/=  (/)
1716neii 2796 . . . . . . . . . . . . . . . . 17  |-  -.  1o  =  (/)
18 eqeq1 2626 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  1o  ->  ( ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  (/)  <->  1o  =  (/) ) )
1917, 18mtbiri 317 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  1o  ->  -.  ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  (/) )
20 ndmfv 6218 . . . . . . . . . . . . . . . 16  |-  ( -. 
|^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  dom  ( A  |`  X )  ->  ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  (/) )
2119, 20nsyl2 142 . . . . . . . . . . . . . . 15  |-  ( ( ( A  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  1o  ->  |^|
{ a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  dom  ( A  |`  X ) )
2221adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  1o  /\  (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  (/) )  ->  |^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  dom  ( A  |`  X ) )
2322orcd 407 . . . . . . . . . . . . 13  |-  ( ( ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  1o  /\  (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  (/) )  -> 
( |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) }  e.  dom  ( A  |`  X )  \/  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  dom  ( B  |`  X ) ) )
2421adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  1o  /\  (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  2o )  ->  |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) }  e.  dom  ( A  |`  X ) )
2524orcd 407 . . . . . . . . . . . . 13  |-  ( ( ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  1o  /\  (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  2o )  ->  ( |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) }  e.  dom  ( A  |`  X )  \/  |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) }  e.  dom  ( B  |`  X ) ) )
26 2on 7568 . . . . . . . . . . . . . . . . . . . . 21  |-  2o  e.  On
2726elexi 3213 . . . . . . . . . . . . . . . . . . . 20  |-  2o  e.  _V
2827prid2 4298 . . . . . . . . . . . . . . . . . . 19  |-  2o  e.  { 1o ,  2o }
2928nosgnn0i 31812 . . . . . . . . . . . . . . . . . 18  |-  (/)  =/=  2o
3029neii 2796 . . . . . . . . . . . . . . . . 17  |-  -.  (/)  =  2o
31 eqeq1 2626 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  2o  ->  ( ( ( B  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  (/)  <->  2o  =  (/) ) )
32 eqcom 2629 . . . . . . . . . . . . . . . . . 18  |-  ( 2o  =  (/)  <->  (/)  =  2o )
3331, 32syl6bb 276 . . . . . . . . . . . . . . . . 17  |-  ( ( ( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  2o  ->  ( ( ( B  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  (/)  <->  (/)  =  2o ) )
3430, 33mtbiri 317 . . . . . . . . . . . . . . . 16  |-  ( ( ( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  2o  ->  -.  ( ( B  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  (/) )
35 ndmfv 6218 . . . . . . . . . . . . . . . 16  |-  ( -. 
|^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  dom  ( B  |`  X )  ->  ( ( B  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  (/) )
3634, 35nsyl2 142 . . . . . . . . . . . . . . 15  |-  ( ( ( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  2o  ->  |^|
{ a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  dom  ( B  |`  X ) )
3736adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  (/)  /\  (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  2o )  ->  |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) }  e.  dom  ( B  |`  X ) )
3837olcd 408 . . . . . . . . . . . . 13  |-  ( ( ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  (/)  /\  (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  2o )  ->  ( |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) }  e.  dom  ( A  |`  X )  \/  |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) }  e.  dom  ( B  |`  X ) ) )
3923, 25, 383jaoi 1391 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  1o  /\  (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  (/) )  \/  ( ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  1o  /\  (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  2o )  \/  ( ( ( A  |`  X ) `  |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  (/)  /\  (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  2o ) )  ->  ( |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  dom  ( A  |`  X )  \/  |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) }  e.  dom  ( B  |`  X ) ) )
4015, 39sylbi 207 . . . . . . . . . . 11  |-  ( ( ( A  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } ) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( ( B  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  ->  ( |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) }  e.  dom  ( A  |`  X )  \/  |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) }  e.  dom  ( B  |`  X ) ) )
4112, 40syl6bi 243 . . . . . . . . . 10  |-  ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  ->  (
( A  |`  X ) <s ( B  |`  X )  ->  ( |^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  dom  ( A  |`  X )  \/  |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) }  e.  dom  ( B  |`  X ) ) ) )
4241imp 445 . . . . . . . . 9  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( A  |`  X ) <s ( B  |`  X ) )  -> 
( |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) }  e.  dom  ( A  |`  X )  \/  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  dom  ( B  |`  X ) ) )
43 dmres 5419 . . . . . . . . . . . 12  |-  dom  ( A  |`  X )  =  ( X  i^i  dom  A )
4443elin2 3801 . . . . . . . . . . 11  |-  ( |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  dom  ( A  |`  X )  <-> 
( |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) }  e.  X  /\  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  dom  A ) )
4544simplbi 476 . . . . . . . . . 10  |-  ( |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  dom  ( A  |`  X )  ->  |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) }  e.  X )
46 dmres 5419 . . . . . . . . . . . 12  |-  dom  ( B  |`  X )  =  ( X  i^i  dom  B )
4746elin2 3801 . . . . . . . . . . 11  |-  ( |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  dom  ( B  |`  X )  <-> 
( |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) }  e.  X  /\  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  dom  B ) )
4847simplbi 476 . . . . . . . . . 10  |-  ( |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  dom  ( B  |`  X )  ->  |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) }  e.  X )
4945, 48jaoi 394 . . . . . . . . 9  |-  ( (
|^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  dom  ( A  |`  X )  \/  |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) }  e.  dom  ( B  |`  X ) )  ->  |^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  X )
5042, 49syl 17 . . . . . . . 8  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( A  |`  X ) <s ( B  |`  X ) )  ->  |^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  X )
51 onelss 5766 . . . . . . . 8  |-  ( X  e.  On  ->  ( |^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  X  ->  |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } 
C_  X ) )
5210, 50, 51sylc 65 . . . . . . 7  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( A  |`  X ) <s ( B  |`  X ) )  ->  |^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  C_  X )
5352sselda 3603 . . . . . 6  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( A  |`  X ) <s ( B  |`  X ) )  /\  y  e.  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) } )  -> 
y  e.  X )
54 onelon 5748 . . . . . . . . 9  |-  ( (
|^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  On  /\  y  e.  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  ->  y  e.  On )
559, 54sylan 488 . . . . . . . 8  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( A  |`  X ) <s ( B  |`  X ) )  /\  y  e.  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) } )  -> 
y  e.  On )
56 intss1 4492 . . . . . . . . . . . . 13  |-  ( y  e.  { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) }  ->  |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } 
C_  y )
57 ontri1 5757 . . . . . . . . . . . . 13  |-  ( (
|^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  On  /\  y  e.  On )  ->  ( |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) }  C_  y  <->  -.  y  e.  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) } ) )
5856, 57syl5ib 234 . . . . . . . . . . . 12  |-  ( (
|^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  On  /\  y  e.  On )  ->  ( y  e. 
{ a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  ->  -.  y  e.  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) } ) )
5958con2d 129 . . . . . . . . . . 11  |-  ( (
|^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  On  /\  y  e.  On )  ->  ( y  e. 
|^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  ->  -.  y  e.  { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) } ) )
609, 59sylan 488 . . . . . . . . . 10  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( A  |`  X ) <s ( B  |`  X ) )  /\  y  e.  On )  ->  ( y  e.  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  ->  -.  y  e.  { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) } ) )
6160impancom 456 . . . . . . . . 9  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( A  |`  X ) <s ( B  |`  X ) )  /\  y  e.  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) } )  -> 
( y  e.  On  ->  -.  y  e.  {
a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } ) )
6255, 61mpd 15 . . . . . . . 8  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( A  |`  X ) <s ( B  |`  X ) )  /\  y  e.  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) } )  ->  -.  y  e.  { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) } )
63 fveq2 6191 . . . . . . . . . . . 12  |-  ( a  =  y  ->  (
( A  |`  X ) `
 a )  =  ( ( A  |`  X ) `  y
) )
64 fveq2 6191 . . . . . . . . . . . 12  |-  ( a  =  y  ->  (
( B  |`  X ) `
 a )  =  ( ( B  |`  X ) `  y
) )
6563, 64neeq12d 2855 . . . . . . . . . . 11  |-  ( a  =  y  ->  (
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a )  <->  ( ( A  |`  X ) `  y )  =/=  (
( B  |`  X ) `
 y ) ) )
6665elrab 3363 . . . . . . . . . 10  |-  ( y  e.  { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) }  <-> 
( y  e.  On  /\  ( ( A  |`  X ) `  y
)  =/=  ( ( B  |`  X ) `  y ) ) )
6766simplbi2 655 . . . . . . . . 9  |-  ( y  e.  On  ->  (
( ( A  |`  X ) `  y
)  =/=  ( ( B  |`  X ) `  y )  ->  y  e.  { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } ) )
6867con3d 148 . . . . . . . 8  |-  ( y  e.  On  ->  ( -.  y  e.  { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) }  ->  -.  ( ( A  |`  X ) `  y
)  =/=  ( ( B  |`  X ) `  y ) ) )
6955, 62, 68sylc 65 . . . . . . 7  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( A  |`  X ) <s ( B  |`  X ) )  /\  y  e.  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) } )  ->  -.  ( ( A  |`  X ) `  y
)  =/=  ( ( B  |`  X ) `  y ) )
70 df-ne 2795 . . . . . . . 8  |-  ( ( ( A  |`  X ) `
 y )  =/=  ( ( B  |`  X ) `  y
)  <->  -.  ( ( A  |`  X ) `  y )  =  ( ( B  |`  X ) `
 y ) )
7170con2bii 347 . . . . . . 7  |-  ( ( ( A  |`  X ) `
 y )  =  ( ( B  |`  X ) `  y
)  <->  -.  ( ( A  |`  X ) `  y )  =/=  (
( B  |`  X ) `
 y ) )
7269, 71sylibr 224 . . . . . 6  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( A  |`  X ) <s ( B  |`  X ) )  /\  y  e.  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) } )  -> 
( ( A  |`  X ) `  y
)  =  ( ( B  |`  X ) `  y ) )
73 fvres 6207 . . . . . . . 8  |-  ( y  e.  X  ->  (
( A  |`  X ) `
 y )  =  ( A `  y
) )
74 fvres 6207 . . . . . . . 8  |-  ( y  e.  X  ->  (
( B  |`  X ) `
 y )  =  ( B `  y
) )
7573, 74eqeq12d 2637 . . . . . . 7  |-  ( y  e.  X  ->  (
( ( A  |`  X ) `  y
)  =  ( ( B  |`  X ) `  y )  <->  ( A `  y )  =  ( B `  y ) ) )
7675biimpd 219 . . . . . 6  |-  ( y  e.  X  ->  (
( ( A  |`  X ) `  y
)  =  ( ( B  |`  X ) `  y )  ->  ( A `  y )  =  ( B `  y ) ) )
7753, 72, 76sylc 65 . . . . 5  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( A  |`  X ) <s ( B  |`  X ) )  /\  y  e.  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) } )  -> 
( A `  y
)  =  ( B `
 y ) )
7877ralrimiva 2966 . . . 4  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( A  |`  X ) <s ( B  |`  X ) )  ->  A. y  e.  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) }  ( A `
 y )  =  ( B `  y
) )
79 fvresval 31665 . . . . . . . . . . . . . . 15  |-  ( ( ( A  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  ( A `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  \/  ( ( A  |`  X ) `  |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  (/) )
8079ori 390 . . . . . . . . . . . . . 14  |-  ( -.  ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  ( A `  |^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  ->  ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  (/) )
8119, 80nsyl2 142 . . . . . . . . . . . . 13  |-  ( ( ( A  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  1o  ->  ( ( A  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  ( A `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } ) )
8281eqcomd 2628 . . . . . . . . . . . 12  |-  ( ( ( A  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  1o  ->  ( A `  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) } )  =  ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } ) )
83 eqeq2 2633 . . . . . . . . . . . 12  |-  ( ( ( A  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  1o  ->  ( ( A `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  <-> 
( A `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  1o ) )
8482, 83mpbid 222 . . . . . . . . . . 11  |-  ( ( ( A  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  1o  ->  ( A `  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) } )  =  1o )
8584adantr 481 . . . . . . . . . 10  |-  ( ( ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  1o  /\  (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  (/) )  -> 
( A `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  1o )
8685a1i 11 . . . . . . . . 9  |-  ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  ->  (
( ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  1o  /\  (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  (/) )  -> 
( A `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  1o ) )
8721ad2antrl 764 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  1o  /\  (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  (/) ) )  ->  |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) }  e.  dom  ( A  |`  X ) )
8887, 45syl 17 . . . . . . . . . . . 12  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  1o  /\  (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  (/) ) )  ->  |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) }  e.  X )
89 nofun 31802 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  |`  X )  e.  No  ->  Fun  ( B  |`  X ) )
90 fvelrn 6352 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Fun  ( B  |`  X )  /\  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  dom  ( B  |`  X ) )  ->  ( ( B  |`  X ) `  |^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  e.  ran  ( B  |`  X ) )
9190ex 450 . . . . . . . . . . . . . . . . . 18  |-  ( Fun  ( B  |`  X )  ->  ( |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) }  e.  dom  ( B  |`  X )  ->  ( ( B  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  e.  ran  ( B  |`  X ) ) )
9289, 91syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( B  |`  X )  e.  No  ->  ( |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  dom  ( B  |`  X )  ->  ( ( B  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  e.  ran  ( B  |`  X ) ) )
93 norn 31804 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  |`  X )  e.  No  ->  ran  ( B  |`  X )  C_  { 1o ,  2o } )
9493sseld 3602 . . . . . . . . . . . . . . . . 17  |-  ( ( B  |`  X )  e.  No  ->  ( (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  e.  ran  ( B  |`  X )  -> 
( ( B  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  e.  { 1o ,  2o } ) )
9592, 94syld 47 . . . . . . . . . . . . . . . 16  |-  ( ( B  |`  X )  e.  No  ->  ( |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  dom  ( B  |`  X )  ->  ( ( B  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  e.  { 1o ,  2o } ) )
96 nosgnn0 31811 . . . . . . . . . . . . . . . . 17  |-  -.  (/)  e.  { 1o ,  2o }
97 eleq1 2689 . . . . . . . . . . . . . . . . 17  |-  ( ( ( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  (/)  ->  (
( ( B  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  e.  { 1o ,  2o }  <->  (/)  e.  { 1o ,  2o } ) )
9896, 97mtbiri 317 . . . . . . . . . . . . . . . 16  |-  ( ( ( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  (/)  ->  -.  ( ( B  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  e.  { 1o ,  2o } )
9995, 98nsyli 155 . . . . . . . . . . . . . . 15  |-  ( ( B  |`  X )  e.  No  ->  ( (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  (/)  ->  -.  |^|
{ a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  dom  ( B  |`  X ) ) )
1004, 99syl 17 . . . . . . . . . . . . . 14  |-  ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  ->  (
( ( B  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  (/)  ->  -.  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  dom  ( B  |`  X ) ) )
101100imp 445 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( B  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  (/) )  ->  -.  |^|
{ a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  dom  ( B  |`  X ) )
102101adantrl 752 . . . . . . . . . . . 12  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  1o  /\  (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  (/) ) )  ->  -.  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) }  e.  dom  ( B  |`  X ) )
10347simplbi2 655 . . . . . . . . . . . . 13  |-  ( |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  X  ->  ( |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) }  e.  dom  B  ->  |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) }  e.  dom  ( B  |`  X ) ) )
104103con3d 148 . . . . . . . . . . . 12  |-  ( |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  X  ->  ( -.  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  dom  ( B  |`  X )  ->  -.  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) }  e.  dom  B ) )
10588, 102, 104sylc 65 . . . . . . . . . . 11  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  1o  /\  (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  (/) ) )  ->  -.  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) }  e.  dom  B )
106 ndmfv 6218 . . . . . . . . . . 11  |-  ( -. 
|^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  dom  B  ->  ( B `  |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  (/) )
107105, 106syl 17 . . . . . . . . . 10  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  1o  /\  (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  (/) ) )  ->  ( B `  |^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  (/) )
108107ex 450 . . . . . . . . 9  |-  ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  ->  (
( ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  1o  /\  (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  (/) )  -> 
( B `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  (/) ) )
10986, 108jcad 555 . . . . . . . 8  |-  ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  ->  (
( ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  1o  /\  (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  (/) )  -> 
( ( A `  |^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) } )  =  (/) ) ) )
110 fvresval 31665 . . . . . . . . . . . . . 14  |-  ( ( ( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  ( B `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  \/  ( ( B  |`  X ) `  |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  (/) )
111110ori 390 . . . . . . . . . . . . 13  |-  ( -.  ( ( B  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  ( B `  |^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  ->  ( ( B  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  (/) )
11234, 111nsyl2 142 . . . . . . . . . . . 12  |-  ( ( ( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  2o  ->  ( ( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  ( B `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } ) )
113112eqcomd 2628 . . . . . . . . . . 11  |-  ( ( ( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  2o  ->  ( B `  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) } )  =  ( ( B  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } ) )
114 eqeq2 2633 . . . . . . . . . . 11  |-  ( ( ( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  2o  ->  ( ( B `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  ( ( B  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  <-> 
( B `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  2o ) )
115113, 114mpbid 222 . . . . . . . . . 10  |-  ( ( ( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  2o  ->  ( B `  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) } )  =  2o )
11684, 115anim12i 590 . . . . . . . . 9  |-  ( ( ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  1o  /\  (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  2o )  ->  ( ( A `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) } )  =  2o ) )
117116a1i 11 . . . . . . . 8  |-  ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  ->  (
( ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  1o  /\  (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  2o )  ->  ( ( A `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) } )  =  2o ) ) )
11836ad2antll 765 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  (/)  /\  (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  2o ) )  ->  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) }  e.  dom  ( B  |`  X ) )
119118, 48syl 17 . . . . . . . . . . . 12  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  (/)  /\  (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  2o ) )  ->  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) }  e.  X
)
120 nofun 31802 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  |`  X )  e.  No  ->  Fun  ( A  |`  X ) )
121 fvelrn 6352 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Fun  ( A  |`  X )  /\  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  dom  ( A  |`  X ) )  ->  ( ( A  |`  X ) `  |^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  e.  ran  ( A  |`  X ) )
122121ex 450 . . . . . . . . . . . . . . . . . 18  |-  ( Fun  ( A  |`  X )  ->  ( |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) }  e.  dom  ( A  |`  X )  ->  ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  e.  ran  ( A  |`  X ) ) )
123120, 122syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( A  |`  X )  e.  No  ->  ( |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  dom  ( A  |`  X )  ->  ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  e.  ran  ( A  |`  X ) ) )
124 norn 31804 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  |`  X )  e.  No  ->  ran  ( A  |`  X )  C_  { 1o ,  2o } )
125124sseld 3602 . . . . . . . . . . . . . . . . 17  |-  ( ( A  |`  X )  e.  No  ->  ( (
( A  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  e.  ran  ( A  |`  X )  -> 
( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  e.  { 1o ,  2o } ) )
126123, 125syld 47 . . . . . . . . . . . . . . . 16  |-  ( ( A  |`  X )  e.  No  ->  ( |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  dom  ( A  |`  X )  ->  ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  e.  { 1o ,  2o } ) )
127 eleq1 2689 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  (/)  ->  (
( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  e.  { 1o ,  2o }  <->  (/)  e.  { 1o ,  2o } ) )
12896, 127mtbiri 317 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  (/)  ->  -.  ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  e.  { 1o ,  2o } )
129126, 128nsyli 155 . . . . . . . . . . . . . . 15  |-  ( ( A  |`  X )  e.  No  ->  ( (
( A  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  (/)  ->  -.  |^|
{ a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  dom  ( A  |`  X ) ) )
1302, 129syl 17 . . . . . . . . . . . . . 14  |-  ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  ->  (
( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  (/)  ->  -.  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  dom  ( A  |`  X ) ) )
131130imp 445 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  (/) )  ->  -.  |^|
{ a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  dom  ( A  |`  X ) )
132131adantrr 753 . . . . . . . . . . . 12  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  (/)  /\  (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  2o ) )  ->  -.  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) }  e.  dom  ( A  |`  X ) )
13344simplbi2 655 . . . . . . . . . . . . 13  |-  ( |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  X  ->  ( |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) }  e.  dom  A  ->  |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) }  e.  dom  ( A  |`  X ) ) )
134133con3d 148 . . . . . . . . . . . 12  |-  ( |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  X  ->  ( -.  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  dom  ( A  |`  X )  ->  -.  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) }  e.  dom  A ) )
135119, 132, 134sylc 65 . . . . . . . . . . 11  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  (/)  /\  (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  2o ) )  ->  -.  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) }  e.  dom  A )
136135ex 450 . . . . . . . . . 10  |-  ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  ->  (
( ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  (/)  /\  (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  2o )  ->  -.  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) }  e.  dom  A ) )
137 ndmfv 6218 . . . . . . . . . 10  |-  ( -. 
|^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  dom  A  ->  ( A `  |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  (/) )
138136, 137syl6 35 . . . . . . . . 9  |-  ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  ->  (
( ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  (/)  /\  (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  2o )  ->  ( A `  |^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  (/) ) )
139115adantl 482 . . . . . . . . . 10  |-  ( ( ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  (/)  /\  (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  2o )  ->  ( B `  |^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  2o )
140139a1i 11 . . . . . . . . 9  |-  ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  ->  (
( ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  (/)  /\  (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  2o )  ->  ( B `  |^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  2o ) )
141138, 140jcad 555 . . . . . . . 8  |-  ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  ->  (
( ( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  (/)  /\  (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  2o )  ->  ( ( A `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  (/)  /\  ( B `  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) } )  =  2o ) ) )
142109, 117, 1413orim123d 1407 . . . . . . 7  |-  ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  ->  (
( ( ( ( A  |`  X ) `  |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  1o  /\  ( ( B  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  (/) )  \/  (
( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  1o  /\  (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  2o )  \/  ( ( ( A  |`  X ) `  |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  (/)  /\  (
( B  |`  X ) `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  =  2o ) )  ->  ( (
( A `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) } )  =  (/) )  \/  (
( A `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) } )  =  2o )  \/  (
( A `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  (/)  /\  ( B `  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) } )  =  2o ) ) ) )
143 fvex 6201 . . . . . . . 8  |-  ( A `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  e.  _V
144 fvex 6201 . . . . . . . 8  |-  ( B `
 |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } )  e.  _V
145143, 144brtp 31639 . . . . . . 7  |-  ( ( A `  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) } ) {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. }  ( B `  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) } )  <->  ( (
( A `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) } )  =  (/) )  \/  (
( A `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) } )  =  2o )  \/  (
( A `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  =  (/)  /\  ( B `  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) } )  =  2o ) ) )
146142, 15, 1453imtr4g 285 . . . . . 6  |-  ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  ->  (
( ( A  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( ( B  |`  X ) `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } )  ->  ( A `  |^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } ) ) )
14712, 146sylbid 230 . . . . 5  |-  ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  ->  (
( A  |`  X ) <s ( B  |`  X )  ->  ( A `  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) } ) {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. }  ( B `  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) } ) ) )
148147imp 445 . . . 4  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( A  |`  X ) <s ( B  |`  X ) )  -> 
( A `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  | 
( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } ) )
149 raleq 3138 . . . . . 6  |-  ( x  =  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) }  ->  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  <->  A. y  e.  |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) }  ( A `  y
)  =  ( B `
 y ) ) )
150 fveq2 6191 . . . . . . 7  |-  ( x  =  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) }  ->  ( A `  x )  =  ( A `  |^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } ) )
151 fveq2 6191 . . . . . . 7  |-  ( x  =  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) }  ->  ( B `  x )  =  ( B `  |^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } ) )
152150, 151breq12d 4666 . . . . . 6  |-  ( x  =  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) }  ->  (
( A `  x
) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x )  <->  ( A `  |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } ) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } ) ) )
153149, 152anbi12d 747 . . . . 5  |-  ( x  =  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) }  ->  (
( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x ) )  <->  ( A. y  e.  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) }  ( A `
 y )  =  ( B `  y
)  /\  ( A `  |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) } ) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) } ) ) ) )
154153rspcev 3309 . . . 4  |-  ( (
|^| { a  e.  On  |  ( ( A  |`  X ) `  a
)  =/=  ( ( B  |`  X ) `  a ) }  e.  On  /\  ( A. y  e.  |^| { a  e.  On  |  ( ( A  |`  X ) `  a )  =/=  (
( B  |`  X ) `
 a ) }  ( A `  y
)  =  ( B `
 y )  /\  ( A `  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) } ) {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. }  ( B `  |^| { a  e.  On  |  ( ( A  |`  X ) `
 a )  =/=  ( ( B  |`  X ) `  a
) } ) ) )  ->  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x ) ) )
1559, 78, 148, 154syl12anc 1324 . . 3  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( A  |`  X ) <s ( B  |`  X ) )  ->  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) ) )
156 sltval 31800 . . . . 5  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A <s
B  <->  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) ) ) )
1571563adant3 1081 . . . 4  |-  ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  ->  ( A <s B  <->  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x ) ) ) )
158157adantr 481 . . 3  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( A  |`  X ) <s ( B  |`  X ) )  -> 
( A <s
B  <->  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) ) ) )
159155, 158mpbird 247 . 2  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( A  |`  X ) <s ( B  |`  X ) )  ->  A <s B )
160159ex 450 1  |-  ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  ->  (
( A  |`  X ) <s ( B  |`  X )  ->  A <s B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   {cpr 4179   {ctp 4181   <.cop 4183   |^|cint 4475   class class class wbr 4653   dom cdm 5114   ran crn 5115    |` cres 5116   Oncon0 5723   Fun wfun 5882   ` cfv 5888   1oc1o 7553   2oc2o 7554   Nocsur 31793   <scslt 31794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1o 7560  df-2o 7561  df-no 31796  df-slt 31797
This theorem is referenced by:  noresle  31846  nosupbnd1lem1  31854  nosupbnd1lem2  31855  nosupbnd1  31860  nosupbnd2lem1  31861  nosupbnd2  31862  noetalem2  31864  noetalem3  31865
  Copyright terms: Public domain W3C validator