Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem4 Structured version   Visualization version   Unicode version

Theorem poimirlem4 33413
Description: Lemma for poimir 33442 connecting the admissible faces on the back face of the  ( M  + 
1 )-cube to admissible simplices in the  M-cube. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0  |-  ( ph  ->  N  e.  NN )
poimirlem4.1  |-  ( ph  ->  K  e.  NN )
poimirlem4.2  |-  ( ph  ->  M  e.  NN0 )
poimirlem4.3  |-  ( ph  ->  M  <  N )
Assertion
Ref Expression
poimirlem4  |-  ( ph  ->  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } )  |  A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B }  ~~  { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } )  |  ( A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( M  +  1 ) )  =  ( M  + 
1 ) ) } )
Distinct variable groups:    f, i,
j, p, s    ph, j    j, M    j, N    ph, i, p, s    B, f, i, j, s    f, K, i, j, p, s   
f, M, i, p, s    f, N, i, p, s
Allowed substitution hints:    ph( f)    B( p)

Proof of Theorem poimirlem4
Dummy variables  k  n  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poimir.0 . . . . . . . 8  |-  ( ph  ->  N  e.  NN )
21adantr 481 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) )  ->  N  e.  NN )
3 poimirlem4.1 . . . . . . . 8  |-  ( ph  ->  K  e.  NN )
43adantr 481 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) )  ->  K  e.  NN )
5 poimirlem4.2 . . . . . . . 8  |-  ( ph  ->  M  e.  NN0 )
65adantr 481 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) )  ->  M  e.  NN0 )
7 poimirlem4.3 . . . . . . . 8  |-  ( ph  ->  M  <  N )
87adantr 481 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) )  ->  M  <  N )
9 xp1st 7198 . . . . . . . . 9  |-  ( t  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M
) )  X.  {
f  |  f : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
) } )  -> 
( 1st `  t
)  e.  ( ( 0..^ K )  ^m  ( 1 ... M
) ) )
10 elmapi 7879 . . . . . . . . 9  |-  ( ( 1st `  t )  e.  ( ( 0..^ K )  ^m  (
1 ... M ) )  ->  ( 1st `  t
) : ( 1 ... M ) --> ( 0..^ K ) )
119, 10syl 17 . . . . . . . 8  |-  ( t  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M
) )  X.  {
f  |  f : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
) } )  -> 
( 1st `  t
) : ( 1 ... M ) --> ( 0..^ K ) )
1211adantl 482 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) )  ->  ( 1st `  t ) : ( 1 ... M
) --> ( 0..^ K ) )
13 xp2nd 7199 . . . . . . . . 9  |-  ( t  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M
) )  X.  {
f  |  f : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
) } )  -> 
( 2nd `  t
)  e.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } )
14 fvex 6201 . . . . . . . . . 10  |-  ( 2nd `  t )  e.  _V
15 f1oeq1 6127 . . . . . . . . . 10  |-  ( f  =  ( 2nd `  t
)  ->  ( f : ( 1 ... M ) -1-1-onto-> ( 1 ... M
)  <->  ( 2nd `  t
) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) )
1614, 15elab 3350 . . . . . . . . 9  |-  ( ( 2nd `  t )  e.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) }  <-> 
( 2nd `  t
) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) )
1713, 16sylib 208 . . . . . . . 8  |-  ( t  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M
) )  X.  {
f  |  f : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
) } )  -> 
( 2nd `  t
) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) )
1817adantl 482 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) )  ->  ( 2nd `  t ) : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
) )
192, 4, 6, 8, 12, 18poimirlem3 33412 . . . . . 6  |-  ( (
ph  /\  t  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) )  ->  ( A. i  e.  (
0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( 1st `  t
)  oF  +  ( ( ( ( 2nd `  t )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  t )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  ->  ( <. ( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >.  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } )  /\  ( A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } )  oF  +  ( ( ( ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) `
 ( M  + 
1 ) )  =  0  /\  ( ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } ) `
 ( M  + 
1 ) )  =  ( M  +  1 ) ) ) ) )
20 fvex 6201 . . . . . . . . . . . . . . . 16  |-  ( 1st `  t )  e.  _V
21 snex 4908 . . . . . . . . . . . . . . . 16  |-  { <. ( M  +  1 ) ,  0 >. }  e.  _V
2220, 21unex 6956 . . . . . . . . . . . . . . 15  |-  ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } )  e.  _V
23 snex 4908 . . . . . . . . . . . . . . . 16  |-  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. }  e.  _V
2414, 23unex 6956 . . . . . . . . . . . . . . 15  |-  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )  e.  _V
2522, 24op1std 7178 . . . . . . . . . . . . . 14  |-  ( s  =  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>.  ->  ( 1st `  s
)  =  ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) )
2622, 24op2ndd 7179 . . . . . . . . . . . . . . . . 17  |-  ( s  =  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>.  ->  ( 2nd `  s
)  =  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } ) )
2726imaeq1d 5465 . . . . . . . . . . . . . . . 16  |-  ( s  =  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>.  ->  ( ( 2nd `  s ) " (
1 ... j ) )  =  ( ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
" ( 1 ... j ) ) )
2827xpeq1d 5138 . . . . . . . . . . . . . . 15  |-  ( s  =  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>.  ->  ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
" ( 1 ... j ) )  X. 
{ 1 } ) )
2926imaeq1d 5465 . . . . . . . . . . . . . . . 16  |-  ( s  =  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>.  ->  ( ( 2nd `  s ) " (
( j  +  1 ) ... ( M  +  1 ) ) )  =  ( ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
" ( ( j  +  1 ) ... ( M  +  1 ) ) ) )
3029xpeq1d 5138 . . . . . . . . . . . . . . 15  |-  ( s  =  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>.  ->  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } )  =  ( ( ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) )
3128, 30uneq12d 3768 . . . . . . . . . . . . . 14  |-  ( s  =  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>.  ->  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) )  =  ( ( ( ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )
3225, 31oveq12d 6668 . . . . . . . . . . . . 13  |-  ( s  =  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>.  ->  ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) )  =  ( ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } )  oF  +  ( ( ( ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) ) )
3332uneq1d 3766 . . . . . . . . . . . 12  |-  ( s  =  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>.  ->  ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  =  ( ( ( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } )  oF  +  ( ( ( ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) ) )
3433csbeq1d 3540 . . . . . . . . . . 11  |-  ( s  =  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>.  ->  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  =  [_ ( ( ( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } )  oF  +  ( ( ( ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B )
3534eqeq2d 2632 . . . . . . . . . 10  |-  ( s  =  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>.  ->  ( i  = 
[_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  <->  i  =  [_ ( ( ( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } )  oF  +  ( ( ( ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B ) )
3635rexbidv 3052 . . . . . . . . 9  |-  ( s  =  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>.  ->  ( E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  <->  E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } )  oF  +  ( ( ( ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B ) )
3736ralbidv 2986 . . . . . . . 8  |-  ( s  =  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>.  ->  ( A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  <->  A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } )  oF  +  ( ( ( ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B ) )
3825fveq1d 6193 . . . . . . . . 9  |-  ( s  =  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>.  ->  ( ( 1st `  s ) `  ( M  +  1 ) )  =  ( ( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) `
 ( M  + 
1 ) ) )
3938eqeq1d 2624 . . . . . . . 8  |-  ( s  =  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>.  ->  ( ( ( 1st `  s ) `
 ( M  + 
1 ) )  =  0  <->  ( ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) `
 ( M  + 
1 ) )  =  0 ) )
4026fveq1d 6193 . . . . . . . . 9  |-  ( s  =  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>.  ->  ( ( 2nd `  s ) `  ( M  +  1 ) )  =  ( ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } ) `
 ( M  + 
1 ) ) )
4140eqeq1d 2624 . . . . . . . 8  |-  ( s  =  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>.  ->  ( ( ( 2nd `  s ) `
 ( M  + 
1 ) )  =  ( M  +  1 )  <->  ( ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } ) `
 ( M  + 
1 ) )  =  ( M  +  1 ) ) )
4237, 39, 413anbi123d 1399 . . . . . . 7  |-  ( s  =  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>.  ->  ( ( A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( M  +  1 ) )  =  ( M  + 
1 ) )  <->  ( A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } )  oF  +  ( ( ( ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) `
 ( M  + 
1 ) )  =  0  /\  ( ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } ) `
 ( M  + 
1 ) )  =  ( M  +  1 ) ) ) )
4342elrab 3363 . . . . . 6  |-  ( <.
( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >.  e.  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  |  ( A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  ( ( 1st `  s
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( M  +  1 ) )  =  ( M  + 
1 ) ) }  <-> 
( <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>.  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X.  {
f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  /\  ( A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ (
( ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } )  oF  +  ( ( ( ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) `
 ( M  + 
1 ) )  =  0  /\  ( ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } ) `
 ( M  + 
1 ) )  =  ( M  +  1 ) ) ) )
4419, 43syl6ibr 242 . . . . 5  |-  ( (
ph  /\  t  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) )  ->  ( A. i  e.  (
0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( 1st `  t
)  oF  +  ( ( ( ( 2nd `  t )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  t )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  ->  <. (
( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >.  e.  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  |  ( A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  ( ( 1st `  s
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( M  +  1 ) )  =  ( M  + 
1 ) ) } ) )
4544ralrimiva 2966 . . . 4  |-  ( ph  ->  A. t  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ( A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  t )  oF  +  ( ( ( ( 2nd `  t
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  t
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  -> 
<. ( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >.  e.  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  |  ( A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  ( ( 1st `  s
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( M  +  1 ) )  =  ( M  + 
1 ) ) } ) )
46 fveq2 6191 . . . . . . . . . . 11  |-  ( s  =  t  ->  ( 1st `  s )  =  ( 1st `  t
) )
47 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( s  =  t  ->  ( 2nd `  s )  =  ( 2nd `  t
) )
4847imaeq1d 5465 . . . . . . . . . . . . 13  |-  ( s  =  t  ->  (
( 2nd `  s
) " ( 1 ... j ) )  =  ( ( 2nd `  t ) " (
1 ... j ) ) )
4948xpeq1d 5138 . . . . . . . . . . . 12  |-  ( s  =  t  ->  (
( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  =  ( ( ( 2nd `  t
) " ( 1 ... j ) )  X.  { 1 } ) )
5047imaeq1d 5465 . . . . . . . . . . . . 13  |-  ( s  =  t  ->  (
( 2nd `  s
) " ( ( j  +  1 ) ... M ) )  =  ( ( 2nd `  t ) " (
( j  +  1 ) ... M ) ) )
5150xpeq1d 5138 . . . . . . . . . . . 12  |-  ( s  =  t  ->  (
( ( 2nd `  s
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } )  =  ( ( ( 2nd `  t
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) )
5249, 51uneq12d 3768 . . . . . . . . . . 11  |-  ( s  =  t  ->  (
( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) )  =  ( ( ( ( 2nd `  t ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  t
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )
5346, 52oveq12d 6668 . . . . . . . . . 10  |-  ( s  =  t  ->  (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  t
)  oF  +  ( ( ( ( 2nd `  t )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  t )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) ) )
5453uneq1d 3766 . . . . . . . . 9  |-  ( s  =  t  ->  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  =  ( ( ( 1st `  t )  oF  +  ( ( ( ( 2nd `  t
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  t
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) ) )
5554csbeq1d 3540 . . . . . . . 8  |-  ( s  =  t  ->  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  =  [_ ( ( ( 1st `  t )  oF  +  ( ( ( ( 2nd `  t
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  t
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B
)
5655eqeq2d 2632 . . . . . . 7  |-  ( s  =  t  ->  (
i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <->  i  =  [_ ( ( ( 1st `  t )  oF  +  ( ( ( ( 2nd `  t
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  t
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B
) )
5756rexbidv 3052 . . . . . 6  |-  ( s  =  t  ->  ( E. j  e.  (
0 ... M ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <->  E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  t )  oF  +  ( ( ( ( 2nd `  t
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  t
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B
) )
5857ralbidv 2986 . . . . 5  |-  ( s  =  t  ->  ( A. i  e.  (
0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <->  A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  t )  oF  +  ( ( ( ( 2nd `  t
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  t
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B
) )
5958ralrab 3368 . . . 4  |-  ( A. t  e.  { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } )  |  A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>.  e.  { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } )  |  ( A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( M  +  1 ) )  =  ( M  + 
1 ) ) }  <->  A. t  e.  (
( ( 0..^ K )  ^m  ( 1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ( A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  t )  oF  +  ( ( ( ( 2nd `  t
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  t
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  -> 
<. ( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >.  e.  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  |  ( A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  ( ( 1st `  s
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( M  +  1 ) )  =  ( M  + 
1 ) ) } ) )
6045, 59sylibr 224 . . 3  |-  ( ph  ->  A. t  e.  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X. 
{ f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M
) } )  | 
A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } <. ( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >.  e.  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  |  ( A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  ( ( 1st `  s
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( M  +  1 ) )  =  ( M  + 
1 ) ) } )
61 xp1st 7198 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X.  {
f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  -> 
( 1st `  k
)  e.  ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) ) )
62 elmapi 7879 . . . . . . . . . . . . . . 15  |-  ( ( 1st `  k )  e.  ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  ->  ( 1st `  k
) : ( 1 ... ( M  + 
1 ) ) --> ( 0..^ K ) )
6361, 62syl 17 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X.  {
f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  -> 
( 1st `  k
) : ( 1 ... ( M  + 
1 ) ) --> ( 0..^ K ) )
64 fzssp1 12384 . . . . . . . . . . . . . 14  |-  ( 1 ... M )  C_  ( 1 ... ( M  +  1 ) )
65 fssres 6070 . . . . . . . . . . . . . 14  |-  ( ( ( 1st `  k
) : ( 1 ... ( M  + 
1 ) ) --> ( 0..^ K )  /\  ( 1 ... M
)  C_  ( 1 ... ( M  + 
1 ) ) )  ->  ( ( 1st `  k )  |`  (
1 ... M ) ) : ( 1 ... M ) --> ( 0..^ K ) )
6663, 64, 65sylancl 694 . . . . . . . . . . . . 13  |-  ( k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X.  {
f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  -> 
( ( 1st `  k
)  |`  ( 1 ... M ) ) : ( 1 ... M
) --> ( 0..^ K ) )
67 ovex 6678 . . . . . . . . . . . . . 14  |-  ( 0..^ K )  e.  _V
68 ovex 6678 . . . . . . . . . . . . . 14  |-  ( 1 ... M )  e. 
_V
6967, 68elmap 7886 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  k
)  |`  ( 1 ... M ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... M ) )  <-> 
( ( 1st `  k
)  |`  ( 1 ... M ) ) : ( 1 ... M
) --> ( 0..^ K ) )
7066, 69sylibr 224 . . . . . . . . . . . 12  |-  ( k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X.  {
f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  -> 
( ( 1st `  k
)  |`  ( 1 ... M ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... M ) ) )
7170ad2antlr 763 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) )  -> 
( ( 1st `  k
)  |`  ( 1 ... M ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... M ) ) )
72 xp2nd 7199 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X.  {
f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  -> 
( 2nd `  k
)  e.  { f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )
73 fvex 6201 . . . . . . . . . . . . . . . . . 18  |-  ( 2nd `  k )  e.  _V
74 f1oeq1 6127 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  ( 2nd `  k
)  ->  ( f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) )  <->  ( 2nd `  k
) : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) ) )
7573, 74elab 3350 . . . . . . . . . . . . . . . . 17  |-  ( ( 2nd `  k )  e.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) }  <-> 
( 2nd `  k
) : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) )
7672, 75sylib 208 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X.  {
f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  -> 
( 2nd `  k
) : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) )
77 f1of1 6136 . . . . . . . . . . . . . . . 16  |-  ( ( 2nd `  k ) : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) )  ->  ( 2nd `  k ) : ( 1 ... ( M  +  1 ) )
-1-1-> ( 1 ... ( M  +  1 ) ) )
7876, 77syl 17 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X.  {
f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  -> 
( 2nd `  k
) : ( 1 ... ( M  + 
1 ) ) -1-1-> ( 1 ... ( M  +  1 ) ) )
79 f1ores 6151 . . . . . . . . . . . . . . 15  |-  ( ( ( 2nd `  k
) : ( 1 ... ( M  + 
1 ) ) -1-1-> ( 1 ... ( M  +  1 ) )  /\  ( 1 ... M )  C_  (
1 ... ( M  + 
1 ) ) )  ->  ( ( 2nd `  k )  |`  (
1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ( ( 2nd `  k
) " ( 1 ... M ) ) )
8078, 64, 79sylancl 694 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X.  {
f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  -> 
( ( 2nd `  k
)  |`  ( 1 ... M ) ) : ( 1 ... M
)
-1-1-onto-> ( ( 2nd `  k
) " ( 1 ... M ) ) )
8180ad2antlr 763 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) )  -> 
( ( 2nd `  k
)  |`  ( 1 ... M ) ) : ( 1 ... M
)
-1-1-onto-> ( ( 2nd `  k
) " ( 1 ... M ) ) )
82 dff1o3 6143 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2nd `  k ) : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) )  <->  ( ( 2nd `  k ) : ( 1 ... ( M  +  1 ) )
-onto-> ( 1 ... ( M  +  1 ) )  /\  Fun  `' ( 2nd `  k ) ) )
8382simprbi 480 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2nd `  k ) : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) )  ->  Fun  `' ( 2nd `  k ) )
84 imadif 5973 . . . . . . . . . . . . . . . . . 18  |-  ( Fun  `' ( 2nd `  k
)  ->  ( ( 2nd `  k ) "
( ( 1 ... ( M  +  1 ) )  \  {
( M  +  1 ) } ) )  =  ( ( ( 2nd `  k )
" ( 1 ... ( M  +  1 ) ) )  \ 
( ( 2nd `  k
) " { ( M  +  1 ) } ) ) )
8576, 83, 843syl 18 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X.  {
f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  -> 
( ( 2nd `  k
) " ( ( 1 ... ( M  +  1 ) ) 
\  { ( M  +  1 ) } ) )  =  ( ( ( 2nd `  k
) " ( 1 ... ( M  + 
1 ) ) ) 
\  ( ( 2nd `  k ) " {
( M  +  1 ) } ) ) )
8685ad2antlr 763 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) )  -> 
( ( 2nd `  k
) " ( ( 1 ... ( M  +  1 ) ) 
\  { ( M  +  1 ) } ) )  =  ( ( ( 2nd `  k
) " ( 1 ... ( M  + 
1 ) ) ) 
\  ( ( 2nd `  k ) " {
( M  +  1 ) } ) ) )
87 f1ofo 6144 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2nd `  k ) : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) )  ->  ( 2nd `  k ) : ( 1 ... ( M  +  1 ) )
-onto-> ( 1 ... ( M  +  1 ) ) )
88 foima 6120 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2nd `  k ) : ( 1 ... ( M  +  1 ) ) -onto-> ( 1 ... ( M  + 
1 ) )  -> 
( ( 2nd `  k
) " ( 1 ... ( M  + 
1 ) ) )  =  ( 1 ... ( M  +  1 ) ) )
8976, 87, 883syl 18 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X.  {
f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  -> 
( ( 2nd `  k
) " ( 1 ... ( M  + 
1 ) ) )  =  ( 1 ... ( M  +  1 ) ) )
9089ad2antlr 763 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) )  -> 
( ( 2nd `  k
) " ( 1 ... ( M  + 
1 ) ) )  =  ( 1 ... ( M  +  1 ) ) )
91 f1ofn 6138 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2nd `  k ) : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) )  ->  ( 2nd `  k )  Fn  (
1 ... ( M  + 
1 ) ) )
9276, 91syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X.  {
f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  -> 
( 2nd `  k
)  Fn  ( 1 ... ( M  + 
1 ) ) )
93 nn0p1nn 11332 . . . . . . . . . . . . . . . . . . . . 21  |-  ( M  e.  NN0  ->  ( M  +  1 )  e.  NN )
945, 93syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( M  +  1 )  e.  NN )
95 elfz1end 12371 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  +  1 )  e.  NN  <->  ( M  +  1 )  e.  ( 1 ... ( M  +  1 ) ) )
9694, 95sylib 208 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( M  +  1 )  e.  ( 1 ... ( M  + 
1 ) ) )
97 fnsnfv 6258 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 2nd `  k
)  Fn  ( 1 ... ( M  + 
1 ) )  /\  ( M  +  1
)  e.  ( 1 ... ( M  + 
1 ) ) )  ->  { ( ( 2nd `  k ) `
 ( M  + 
1 ) ) }  =  ( ( 2nd `  k ) " {
( M  +  1 ) } ) )
9892, 96, 97syl2anr 495 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  ->  { ( ( 2nd `  k
) `  ( M  +  1 ) ) }  =  ( ( 2nd `  k )
" { ( M  +  1 ) } ) )
99 sneq 4187 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 )  ->  { ( ( 2nd `  k
) `  ( M  +  1 ) ) }  =  { ( M  +  1 ) } )
10098, 99sylan9req 2677 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) )  -> 
( ( 2nd `  k
) " { ( M  +  1 ) } )  =  {
( M  +  1 ) } )
10190, 100difeq12d 3729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) )  -> 
( ( ( 2nd `  k ) " (
1 ... ( M  + 
1 ) ) ) 
\  ( ( 2nd `  k ) " {
( M  +  1 ) } ) )  =  ( ( 1 ... ( M  + 
1 ) )  \  { ( M  + 
1 ) } ) )
10286, 101eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) )  -> 
( ( 2nd `  k
) " ( ( 1 ... ( M  +  1 ) ) 
\  { ( M  +  1 ) } ) )  =  ( ( 1 ... ( M  +  1 ) )  \  { ( M  +  1 ) } ) )
103 1z 11407 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  ZZ
104 nn0uz 11722 . . . . . . . . . . . . . . . . . . . . . . 23  |-  NN0  =  ( ZZ>= `  0 )
105 1m1e0 11089 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 1  -  1 )  =  0
106105fveq2i 6194 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ZZ>= `  ( 1  -  1 ) )  =  (
ZZ>= `  0 )
107104, 106eqtr4i 2647 . . . . . . . . . . . . . . . . . . . . . 22  |-  NN0  =  ( ZZ>= `  ( 1  -  1 ) )
1085, 107syl6eleq 2711 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  M  e.  ( ZZ>= `  ( 1  -  1 ) ) )
109 fzsuc2 12398 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1  e.  ZZ  /\  M  e.  ( ZZ>= `  ( 1  -  1 ) ) )  -> 
( 1 ... ( M  +  1 ) )  =  ( ( 1 ... M )  u.  { ( M  +  1 ) } ) )
110103, 108, 109sylancr 695 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( 1 ... ( M  +  1 ) )  =  ( ( 1 ... M )  u.  { ( M  +  1 ) } ) )
111110difeq1d 3727 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( 1 ... ( M  +  1 ) )  \  {
( M  +  1 ) } )  =  ( ( ( 1 ... M )  u. 
{ ( M  + 
1 ) } ) 
\  { ( M  +  1 ) } ) )
112 difun2 4048 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 1 ... M
)  u.  { ( M  +  1 ) } )  \  {
( M  +  1 ) } )  =  ( ( 1 ... M )  \  {
( M  +  1 ) } )
113111, 112syl6eq 2672 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 1 ... ( M  +  1 ) )  \  {
( M  +  1 ) } )  =  ( ( 1 ... M )  \  {
( M  +  1 ) } ) )
1145nn0red 11352 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  M  e.  RR )
115 ltp1 10861 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( M  e.  RR  ->  M  <  ( M  +  1 ) )
116 peano2re 10209 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( M  e.  RR  ->  ( M  +  1 )  e.  RR )
117 ltnle 10117 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( M  e.  RR  /\  ( M  +  1
)  e.  RR )  ->  ( M  < 
( M  +  1 )  <->  -.  ( M  +  1 )  <_  M ) )
118116, 117mpdan 702 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( M  e.  RR  ->  ( M  <  ( M  + 
1 )  <->  -.  ( M  +  1 )  <_  M ) )
119115, 118mpbid 222 . . . . . . . . . . . . . . . . . . . . 21  |-  ( M  e.  RR  ->  -.  ( M  +  1
)  <_  M )
120114, 119syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  -.  ( M  + 
1 )  <_  M
)
121 elfzle2 12345 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  +  1 )  e.  ( 1 ... M )  ->  ( M  +  1 )  <_  M )
122120, 121nsyl 135 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  -.  ( M  + 
1 )  e.  ( 1 ... M ) )
123 difsn 4328 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  ( M  +  1 )  e.  ( 1 ... M )  -> 
( ( 1 ... M )  \  {
( M  +  1 ) } )  =  ( 1 ... M
) )
124122, 123syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 1 ... M )  \  {
( M  +  1 ) } )  =  ( 1 ... M
) )
125113, 124eqtrd 2656 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 1 ... ( M  +  1 ) )  \  {
( M  +  1 ) } )  =  ( 1 ... M
) )
126125imaeq2d 5466 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 2nd `  k
) " ( ( 1 ... ( M  +  1 ) ) 
\  { ( M  +  1 ) } ) )  =  ( ( 2nd `  k
) " ( 1 ... M ) ) )
127126ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) )  -> 
( ( 2nd `  k
) " ( ( 1 ... ( M  +  1 ) ) 
\  { ( M  +  1 ) } ) )  =  ( ( 2nd `  k
) " ( 1 ... M ) ) )
128125ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) )  -> 
( ( 1 ... ( M  +  1 ) )  \  {
( M  +  1 ) } )  =  ( 1 ... M
) )
129102, 127, 1283eqtr3d 2664 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) )  -> 
( ( 2nd `  k
) " ( 1 ... M ) )  =  ( 1 ... M ) )
130 f1oeq3 6129 . . . . . . . . . . . . . 14  |-  ( ( ( 2nd `  k
) " ( 1 ... M ) )  =  ( 1 ... M )  ->  (
( ( 2nd `  k
)  |`  ( 1 ... M ) ) : ( 1 ... M
)
-1-1-onto-> ( ( 2nd `  k
) " ( 1 ... M ) )  <-> 
( ( 2nd `  k
)  |`  ( 1 ... M ) ) : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
) ) )
131129, 130syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) )  -> 
( ( ( 2nd `  k )  |`  (
1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ( ( 2nd `  k
) " ( 1 ... M ) )  <-> 
( ( 2nd `  k
)  |`  ( 1 ... M ) ) : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
) ) )
13281, 131mpbid 222 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) )  -> 
( ( 2nd `  k
)  |`  ( 1 ... M ) ) : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
) )
13373resex 5443 . . . . . . . . . . . . 13  |-  ( ( 2nd `  k )  |`  ( 1 ... M
) )  e.  _V
134 f1oeq1 6127 . . . . . . . . . . . . 13  |-  ( f  =  ( ( 2nd `  k )  |`  (
1 ... M ) )  ->  ( f : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
)  <->  ( ( 2nd `  k )  |`  (
1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M
) ) )
135133, 134elab 3350 . . . . . . . . . . . 12  |-  ( ( ( 2nd `  k
)  |`  ( 1 ... M ) )  e. 
{ f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M
) }  <->  ( ( 2nd `  k )  |`  ( 1 ... M
) ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) )
136132, 135sylibr 224 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) )  -> 
( ( 2nd `  k
)  |`  ( 1 ... M ) )  e. 
{ f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M
) } )
137 opelxpi 5148 . . . . . . . . . . 11  |-  ( ( ( ( 1st `  k
)  |`  ( 1 ... M ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... M ) )  /\  ( ( 2nd `  k )  |`  (
1 ... M ) )  e.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } )  ->  <. ( ( 1st `  k )  |`  ( 1 ... M
) ) ,  ( ( 2nd `  k
)  |`  ( 1 ... M ) ) >.  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) )
13871, 136, 137syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) )  ->  <. ( ( 1st `  k
)  |`  ( 1 ... M ) ) ,  ( ( 2nd `  k
)  |`  ( 1 ... M ) ) >.  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) )
1391383ad2antr3 1228 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  ( A. i  e.  (
0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( 1st `  k
)  oF  +  ( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  k
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) ) )  ->  <. ( ( 1st `  k )  |`  (
1 ... M ) ) ,  ( ( 2nd `  k )  |`  (
1 ... M ) )
>.  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M
) )  X.  {
f  |  f : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
) } ) )
140 3anass 1042 . . . . . . . . . . 11  |-  ( ( A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ (
( ( 1st `  k
)  oF  +  ( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  k
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) )  <->  ( A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( 1st `  k
)  oF  +  ( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( ( 1st `  k
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) ) ) )
141 ancom 466 . . . . . . . . . . 11  |-  ( ( A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ (
( ( 1st `  k
)  oF  +  ( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( ( 1st `  k
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) ) )  <-> 
( ( ( ( 1st `  k ) `
 ( M  + 
1 ) )  =  0  /\  ( ( 2nd `  k ) `
 ( M  + 
1 ) )  =  ( M  +  1 ) )  /\  A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( 1st `  k
)  oF  +  ( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B ) )
142140, 141bitri 264 . . . . . . . . . 10  |-  ( ( A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ (
( ( 1st `  k
)  oF  +  ( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  k
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) )  <->  ( (
( ( 1st `  k
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) )  /\  A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( 1st `  k
)  oF  +  ( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B ) )
14394nnzd 11481 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
144 uzid 11702 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( M  +  1 )  e.  ZZ  ->  ( M  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
145 peano2uz 11741 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( M  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) )  ->  ( ( M  +  1 )  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
146143, 144, 1453syl 18 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( ( M  + 
1 )  +  1 )  e.  ( ZZ>= `  ( M  +  1
) ) )
1475nn0zd 11480 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  M  e.  ZZ )
1481nnzd 11481 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  N  e.  ZZ )
149 zltp1le 11427 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <->  ( M  +  1 )  <_  N ) )
150 peano2z 11418 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( M  e.  ZZ  ->  ( M  +  1 )  e.  ZZ )
151 eluz 11701 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( M  +  1 )  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  ( M  + 
1 ) )  <->  ( M  +  1 )  <_  N ) )
152150, 151sylan 488 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  ( M  + 
1 ) )  <->  ( M  +  1 )  <_  N ) )
153149, 152bitr4d 271 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <->  N  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
154147, 148, 153syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( M  <  N  <->  N  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
1557, 154mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  N  e.  ( ZZ>= `  ( M  +  1
) ) )
156 fzsplit2 12366 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( M  + 
1 )  +  1 )  e.  ( ZZ>= `  ( M  +  1
) )  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( M  +  1 ) ... N )  =  ( ( ( M  +  1 ) ... ( M  +  1 ) )  u.  (
( ( M  + 
1 )  +  1 ) ... N ) ) )
157146, 155, 156syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  =  ( ( ( M  +  1 ) ... ( M  +  1 ) )  u.  ( ( ( M  +  1 )  +  1 ) ... N ) ) )
158 fzsn 12383 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( M  +  1 )  e.  ZZ  ->  (
( M  +  1 ) ... ( M  +  1 ) )  =  { ( M  +  1 ) } )
159143, 158syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( ( M  + 
1 ) ... ( M  +  1 ) )  =  { ( M  +  1 ) } )
160159uneq1d 3766 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( ( M  +  1 ) ... ( M  +  1 ) )  u.  (
( ( M  + 
1 )  +  1 ) ... N ) )  =  ( { ( M  +  1 ) }  u.  (
( ( M  + 
1 )  +  1 ) ... N ) ) )
161157, 160eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  =  ( { ( M  +  1 ) }  u.  (
( ( M  + 
1 )  +  1 ) ... N ) ) )
162161xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( ( M  +  1 ) ... N )  X.  {
0 } )  =  ( ( { ( M  +  1 ) }  u.  ( ( ( M  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) )
163162uneq2d 3767 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( n  e.  ( 1 ... M
)  |->  ( ( ( 1st `  k ) `
 n )  +  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  n
) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  =  ( ( n  e.  ( 1 ... M )  |->  ( ( ( 1st `  k
) `  n )  +  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  n
) ) )  u.  ( ( { ( M  +  1 ) }  u.  ( ( ( M  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) )
164 xpundir 5172 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( { ( M  + 
1 ) }  u.  ( ( ( M  +  1 )  +  1 ) ... N
) )  X.  {
0 } )  =  ( ( { ( M  +  1 ) }  X.  { 0 } )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )
165 ovex 6678 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( M  +  1 )  e. 
_V
166 c0ex 10034 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  0  e.  _V
167165, 166xpsn 6407 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( { ( M  +  1 ) }  X.  {
0 } )  =  { <. ( M  + 
1 ) ,  0
>. }
168167uneq1i 3763 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( { ( M  + 
1 ) }  X.  { 0 } )  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X. 
{ 0 } ) )  =  ( {
<. ( M  +  1 ) ,  0 >. }  u.  ( (
( ( M  + 
1 )  +  1 ) ... N )  X.  { 0 } ) )
169164, 168eqtri 2644 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( { ( M  + 
1 ) }  u.  ( ( ( M  +  1 )  +  1 ) ... N
) )  X.  {
0 } )  =  ( { <. ( M  +  1 ) ,  0 >. }  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) )
170169uneq2i 3764 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( n  e.  ( 1 ... M )  |->  ( ( ( 1st `  k
) `  n )  +  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  n
) ) )  u.  ( ( { ( M  +  1 ) }  u.  ( ( ( M  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) )  =  ( ( n  e.  ( 1 ... M ) 
|->  ( ( ( 1st `  k ) `  n
)  +  ( ( ( ( ( 2nd `  k ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  n
) ) )  u.  ( { <. ( M  +  1 ) ,  0 >. }  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) )
171 unass 3770 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( n  e.  ( 1 ... M ) 
|->  ( ( ( 1st `  k ) `  n
)  +  ( ( ( ( ( 2nd `  k ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  n
) ) )  u. 
{ <. ( M  + 
1 ) ,  0
>. } )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  =  ( ( n  e.  ( 1 ... M
)  |->  ( ( ( 1st `  k ) `
 n )  +  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  n
) ) )  u.  ( { <. ( M  +  1 ) ,  0 >. }  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) )
172170, 171eqtr4i 2647 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  ( 1 ... M )  |->  ( ( ( 1st `  k
) `  n )  +  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  n
) ) )  u.  ( ( { ( M  +  1 ) }  u.  ( ( ( M  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) )  =  ( ( ( n  e.  ( 1 ... M
)  |->  ( ( ( 1st `  k ) `
 n )  +  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  n
) ) )  u. 
{ <. ( M  + 
1 ) ,  0
>. } )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )
173163, 172syl6eq 2672 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( n  e.  ( 1 ... M
)  |->  ( ( ( 1st `  k ) `
 n )  +  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  n
) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  =  ( ( ( n  e.  ( 1 ... M )  |->  ( ( ( 1st `  k
) `  n )  +  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  n
) ) )  u. 
{ <. ( M  + 
1 ) ,  0
>. } )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) ) )
174173ad3antrrr 766 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( ( 1st `  k ) `
 ( M  + 
1 ) )  =  0  /\  ( ( 2nd `  k ) `
 ( M  + 
1 ) )  =  ( M  +  1 ) ) )  /\  j  e.  ( 0 ... M ) )  ->  ( ( n  e.  ( 1 ... M )  |->  ( ( ( 1st `  k
) `  n )  +  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  n
) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  =  ( ( ( n  e.  ( 1 ... M )  |->  ( ( ( 1st `  k
) `  n )  +  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  n
) ) )  u. 
{ <. ( M  + 
1 ) ,  0
>. } )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) ) )
175165a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( ( 1st `  k ) `
 ( M  + 
1 ) )  =  0  /\  ( ( 2nd `  k ) `
 ( M  + 
1 ) )  =  ( M  +  1 ) ) )  /\  j  e.  ( 0 ... M ) )  ->  ( M  + 
1 )  e.  _V )
176166a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( ( 1st `  k ) `
 ( M  + 
1 ) )  =  0  /\  ( ( 2nd `  k ) `
 ( M  + 
1 ) )  =  ( M  +  1 ) ) )  /\  j  e.  ( 0 ... M ) )  ->  0  e.  _V )
177110eqcomd 2628 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( 1 ... M )  u.  {
( M  +  1 ) } )  =  ( 1 ... ( M  +  1 ) ) )
178177ad3antrrr 766 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( ( 1st `  k ) `
 ( M  + 
1 ) )  =  0  /\  ( ( 2nd `  k ) `
 ( M  + 
1 ) )  =  ( M  +  1 ) ) )  /\  j  e.  ( 0 ... M ) )  ->  ( ( 1 ... M )  u. 
{ ( M  + 
1 ) } )  =  ( 1 ... ( M  +  1 ) ) )
179 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  =  ( M  + 
1 )  ->  (
( 1st `  k
) `  n )  =  ( ( 1st `  k ) `  ( M  +  1 ) ) )
180 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  =  ( M  + 
1 )  ->  (
( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) `  n )  =  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  ( M  +  1 ) ) )
181179, 180oveq12d 6668 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  =  ( M  + 
1 )  ->  (
( ( 1st `  k
) `  n )  +  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  n
) )  =  ( ( ( 1st `  k
) `  ( M  +  1 ) )  +  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  ( M  +  1 ) ) ) )
182 simplrl 800 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( ( 1st `  k ) `
 ( M  + 
1 ) )  =  0  /\  ( ( 2nd `  k ) `
 ( M  + 
1 ) )  =  ( M  +  1 ) ) )  /\  j  e.  ( 0 ... M ) )  ->  ( ( 1st `  k ) `  ( M  +  1 ) )  =  0 )
183 imain 5974 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( Fun  `' ( 2nd `  k
)  ->  ( ( 2nd `  k ) "
( ( 1 ... j )  i^i  (
( j  +  1 ) ... ( M  +  1 ) ) ) )  =  ( ( ( 2nd `  k
) " ( 1 ... j ) )  i^i  ( ( 2nd `  k ) " (
( j  +  1 ) ... ( M  +  1 ) ) ) ) )
18476, 83, 1833syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X.  {
f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  -> 
( ( 2nd `  k
) " ( ( 1 ... j )  i^i  ( ( j  +  1 ) ... ( M  +  1 ) ) ) )  =  ( ( ( 2nd `  k )
" ( 1 ... j ) )  i^i  ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) ) ) )
185184ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) )  -> 
( ( 2nd `  k
) " ( ( 1 ... j )  i^i  ( ( j  +  1 ) ... ( M  +  1 ) ) ) )  =  ( ( ( 2nd `  k )
" ( 1 ... j ) )  i^i  ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) ) ) )
186 elfznn0 12433 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( j  e.  ( 0 ... M )  ->  j  e.  NN0 )
187186nn0red 11352 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( j  e.  ( 0 ... M )  ->  j  e.  RR )
188187ltp1d 10954 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( j  e.  ( 0 ... M )  ->  j  <  ( j  +  1 ) )
189 fzdisj 12368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( j  <  ( j  +  1 )  ->  (
( 1 ... j
)  i^i  ( (
j  +  1 ) ... ( M  + 
1 ) ) )  =  (/) )
190188, 189syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( j  e.  ( 0 ... M )  ->  (
( 1 ... j
)  i^i  ( (
j  +  1 ) ... ( M  + 
1 ) ) )  =  (/) )
191190imaeq2d 5466 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( j  e.  ( 0 ... M )  ->  (
( 2nd `  k
) " ( ( 1 ... j )  i^i  ( ( j  +  1 ) ... ( M  +  1 ) ) ) )  =  ( ( 2nd `  k ) " (/) ) )
192 ima0 5481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( 2nd `  k )
" (/) )  =  (/)
193191, 192syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( j  e.  ( 0 ... M )  ->  (
( 2nd `  k
) " ( ( 1 ... j )  i^i  ( ( j  +  1 ) ... ( M  +  1 ) ) ) )  =  (/) )
194185, 193sylan9req 2677 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  ->  ( (
( 2nd `  k
) " ( 1 ... j ) )  i^i  ( ( 2nd `  k ) " (
( j  +  1 ) ... ( M  +  1 ) ) ) )  =  (/) )
195 simplr 792 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  ->  ( ( 2nd `  k ) `  ( M  +  1
) )  =  ( M  +  1 ) )
19692ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) )  -> 
( 2nd `  k
)  Fn  ( 1 ... ( M  + 
1 ) ) )
197 nn0p1nn 11332 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( j  e.  NN0  ->  ( j  +  1 )  e.  NN )
198 nnuz 11723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  NN  =  ( ZZ>= `  1 )
199197, 198syl6eleq 2711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( j  e.  NN0  ->  ( j  +  1 )  e.  ( ZZ>= `  1 )
)
200 fzss1 12380 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( j  +  1 )  e.  ( ZZ>= `  1
)  ->  ( (
j  +  1 ) ... ( M  + 
1 ) )  C_  ( 1 ... ( M  +  1 ) ) )
201186, 199, 2003syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( j  e.  ( 0 ... M )  ->  (
( j  +  1 ) ... ( M  +  1 ) ) 
C_  ( 1 ... ( M  +  1 ) ) )
202 elfzuz3 12339 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( j  e.  ( 0 ... M )  ->  M  e.  ( ZZ>= `  j )
)
203 eluzp1p1 11713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( M  e.  ( ZZ>= `  j
)  ->  ( M  +  1 )  e.  ( ZZ>= `  ( j  +  1 ) ) )
204 eluzfz2 12349 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( M  +  1 )  e.  ( ZZ>= `  (
j  +  1 ) )  ->  ( M  +  1 )  e.  ( ( j  +  1 ) ... ( M  +  1 ) ) )
205202, 203, 2043syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( j  e.  ( 0 ... M )  ->  ( M  +  1 )  e.  ( ( j  +  1 ) ... ( M  +  1 ) ) )
206201, 205jca 554 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( j  e.  ( 0 ... M )  ->  (
( ( j  +  1 ) ... ( M  +  1 ) )  C_  ( 1 ... ( M  + 
1 ) )  /\  ( M  +  1
)  e.  ( ( j  +  1 ) ... ( M  + 
1 ) ) ) )
207 fnfvima 6496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( 2nd `  k
)  Fn  ( 1 ... ( M  + 
1 ) )  /\  ( ( j  +  1 ) ... ( M  +  1 ) )  C_  ( 1 ... ( M  + 
1 ) )  /\  ( M  +  1
)  e.  ( ( j  +  1 ) ... ( M  + 
1 ) ) )  ->  ( ( 2nd `  k ) `  ( M  +  1 ) )  e.  ( ( 2nd `  k )
" ( ( j  +  1 ) ... ( M  +  1 ) ) ) )
2082073expb 1266 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( 2nd `  k
)  Fn  ( 1 ... ( M  + 
1 ) )  /\  ( ( ( j  +  1 ) ... ( M  +  1 ) )  C_  (
1 ... ( M  + 
1 ) )  /\  ( M  +  1
)  e.  ( ( j  +  1 ) ... ( M  + 
1 ) ) ) )  ->  ( ( 2nd `  k ) `  ( M  +  1
) )  e.  ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) ) )
209196, 206, 208syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  ->  ( ( 2nd `  k ) `  ( M  +  1
) )  e.  ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) ) )
210195, 209eqeltrrd 2702 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  ->  ( M  +  1 )  e.  ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) ) )
211 1ex 10035 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  1  e.  _V
212 fnconstg 6093 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( 1  e.  _V  ->  (
( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  Fn  ( ( 2nd `  k )
" ( 1 ... j ) ) )
213211, 212ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  Fn  ( ( 2nd `  k )
" ( 1 ... j ) )
214 fnconstg 6093 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( 0  e.  _V  ->  (
( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } )  Fn  ( ( 2nd `  k )
" ( ( j  +  1 ) ... ( M  +  1 ) ) ) )
215166, 214ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } )  Fn  ( ( 2nd `  k )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )
216 fvun2 6270 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( 2nd `  k ) " (
1 ... j ) )  X.  { 1 } )  Fn  ( ( 2nd `  k )
" ( 1 ... j ) )  /\  ( ( ( 2nd `  k ) " (
( j  +  1 ) ... ( M  +  1 ) ) )  X.  { 0 } )  Fn  (
( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  /\  ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  i^i  ( ( 2nd `  k ) " (
( j  +  1 ) ... ( M  +  1 ) ) ) )  =  (/)  /\  ( M  +  1 )  e.  ( ( 2nd `  k )
" ( ( j  +  1 ) ... ( M  +  1 ) ) ) ) )  ->  ( (
( ( ( 2nd `  k ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  ( M  +  1 ) )  =  ( ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) `  ( M  +  1 ) ) )
217213, 215, 216mp3an12 1414 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( 2nd `  k ) " (
1 ... j ) )  i^i  ( ( 2nd `  k ) " (
( j  +  1 ) ... ( M  +  1 ) ) ) )  =  (/)  /\  ( M  +  1 )  e.  ( ( 2nd `  k )
" ( ( j  +  1 ) ... ( M  +  1 ) ) ) )  ->  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  ( M  +  1 ) )  =  ( ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) `  ( M  +  1 ) ) )
218194, 210, 217syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  ->  ( (
( ( ( 2nd `  k ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  ( M  +  1 ) )  =  ( ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) `  ( M  +  1 ) ) )
219166fvconst2 6469 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( M  +  1 )  e.  ( ( 2nd `  k ) " (
( j  +  1 ) ... ( M  +  1 ) ) )  ->  ( (
( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) `  ( M  +  1 ) )  =  0 )
220210, 219syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  ->  ( (
( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) `  ( M  +  1 ) )  =  0 )
221218, 220eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  ->  ( (
( ( ( 2nd `  k ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  ( M  +  1 ) )  =  0 )
222221adantlrl 756 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( ( 1st `  k ) `
 ( M  + 
1 ) )  =  0  /\  ( ( 2nd `  k ) `
 ( M  + 
1 ) )  =  ( M  +  1 ) ) )  /\  j  e.  ( 0 ... M ) )  ->  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  ( M  +  1 ) )  =  0 )
223182, 222oveq12d 6668 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( ( 1st `  k ) `
 ( M  + 
1 ) )  =  0  /\  ( ( 2nd `  k ) `
 ( M  + 
1 ) )  =  ( M  +  1 ) ) )  /\  j  e.  ( 0 ... M ) )  ->  ( ( ( 1st `  k ) `
 ( M  + 
1 ) )  +  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  ( M  +  1 ) ) )  =  ( 0  +  0 ) )
224 00id 10211 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 0  +  0 )  =  0
225223, 224syl6eq 2672 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( ( 1st `  k ) `
 ( M  + 
1 ) )  =  0  /\  ( ( 2nd `  k ) `
 ( M  + 
1 ) )  =  ( M  +  1 ) ) )  /\  j  e.  ( 0 ... M ) )  ->  ( ( ( 1st `  k ) `
 ( M  + 
1 ) )  +  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  ( M  +  1 ) ) )  =  0 )
226181, 225sylan9eqr 2678 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( ( 1st `  k ) `
 ( M  + 
1 ) )  =  0  /\  ( ( 2nd `  k ) `
 ( M  + 
1 ) )  =  ( M  +  1 ) ) )  /\  j  e.  ( 0 ... M ) )  /\  n  =  ( M  +  1 ) )  ->  ( (
( 1st `  k
) `  n )  +  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  n
) )  =  0 )
227175, 176, 178, 226fmptapd 6437 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( ( 1st `  k ) `
 ( M  + 
1 ) )  =  0  /\  ( ( 2nd `  k ) `
 ( M  + 
1 ) )  =  ( M  +  1 ) ) )  /\  j  e.  ( 0 ... M ) )  ->  ( ( n  e.  ( 1 ... M )  |->  ( ( ( 1st `  k
) `  n )  +  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  n
) ) )  u. 
{ <. ( M  + 
1 ) ,  0
>. } )  =  ( n  e.  ( 1 ... ( M  + 
1 ) )  |->  ( ( ( 1st `  k
) `  n )  +  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  n
) ) ) )
228227uneq1d 3766 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( ( 1st `  k ) `
 ( M  + 
1 ) )  =  0  /\  ( ( 2nd `  k ) `
 ( M  + 
1 ) )  =  ( M  +  1 ) ) )  /\  j  e.  ( 0 ... M ) )  ->  ( ( ( n  e.  ( 1 ... M )  |->  ( ( ( 1st `  k
) `  n )  +  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  n
) ) )  u. 
{ <. ( M  + 
1 ) ,  0
>. } )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  =  ( ( n  e.  ( 1 ... ( M  +  1 ) )  |->  ( ( ( 1st `  k ) `
 n )  +  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  n
) ) )  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) )
229174, 228eqtrd 2656 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( ( 1st `  k ) `
 ( M  + 
1 ) )  =  0  /\  ( ( 2nd `  k ) `
 ( M  + 
1 ) )  =  ( M  +  1 ) ) )  /\  j  e.  ( 0 ... M ) )  ->  ( ( n  e.  ( 1 ... M )  |->  ( ( ( 1st `  k
) `  n )  +  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  n
) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  =  ( ( n  e.  ( 1 ... ( M  +  1 ) )  |->  ( ( ( 1st `  k
) `  n )  +  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  n
) ) )  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) )
230 elmapfn 7880 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 1st `  k )  e.  ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  ->  ( 1st `  k
)  Fn  ( 1 ... ( M  + 
1 ) ) )
23161, 230syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X.  {
f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  -> 
( 1st `  k
)  Fn  ( 1 ... ( M  + 
1 ) ) )
232 fnssres 6004 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( 1st `  k
)  Fn  ( 1 ... ( M  + 
1 ) )  /\  ( 1 ... M
)  C_  ( 1 ... ( M  + 
1 ) ) )  ->  ( ( 1st `  k )  |`  (
1 ... M ) )  Fn  ( 1 ... M ) )
233231, 64, 232sylancl 694 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X.  {
f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  -> 
( ( 1st `  k
)  |`  ( 1 ... M ) )  Fn  ( 1 ... M
) )
234233ad3antlr 767 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  ->  ( ( 1st `  k )  |`  ( 1 ... M
) )  Fn  (
1 ... M ) )
235 simplr 792 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) )  -> 
k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )
236 fnconstg 6093 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( 0  e.  _V  ->  (
( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } )  Fn  ( ( 2nd `  k )
" ( ( j  +  1 ) ... M ) ) )
237166, 236ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } )  Fn  ( ( 2nd `  k )
" ( ( j  +  1 ) ... M ) )
238213, 237pm3.2i 471 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  Fn  ( ( 2nd `  k )
" ( 1 ... j ) )  /\  ( ( ( 2nd `  k ) " (
( j  +  1 ) ... M ) )  X.  { 0 } )  Fn  (
( 2nd `  k
) " ( ( j  +  1 ) ... M ) ) )
239 imain 5974 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( Fun  `' ( 2nd `  k
)  ->  ( ( 2nd `  k ) "
( ( 1 ... j )  i^i  (
( j  +  1 ) ... M ) ) )  =  ( ( ( 2nd `  k
) " ( 1 ... j ) )  i^i  ( ( 2nd `  k ) " (
( j  +  1 ) ... M ) ) ) )
24076, 83, 2393syl 18 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X.  {
f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  -> 
( ( 2nd `  k
) " ( ( 1 ... j )  i^i  ( ( j  +  1 ) ... M ) ) )  =  ( ( ( 2nd `  k )
" ( 1 ... j ) )  i^i  ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) ) ) )
241 fzdisj 12368 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( j  <  ( j  +  1 )  ->  (
( 1 ... j
)  i^i  ( (
j  +  1 ) ... M ) )  =  (/) )
242188, 241syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( j  e.  ( 0 ... M )  ->  (
( 1 ... j
)  i^i  ( (
j  +  1 ) ... M ) )  =  (/) )
243242imaeq2d 5466 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( j  e.  ( 0 ... M )  ->  (
( 2nd `  k
) " ( ( 1 ... j )  i^i  ( ( j  +  1 ) ... M ) ) )  =  ( ( 2nd `  k ) " (/) ) )
244243, 192syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( j  e.  ( 0 ... M )  ->  (
( 2nd `  k
) " ( ( 1 ... j )  i^i  ( ( j  +  1 ) ... M ) ) )  =  (/) )
245240, 244sylan9req 2677 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  /\  j  e.  ( 0 ... M ) )  ->  ( ( ( 2nd `  k )
" ( 1 ... j ) )  i^i  ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) ) )  =  (/) )
246 fnun 5997 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  k ) " (
1 ... j ) )  /\  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  k ) " (
( j  +  1 ) ... M ) ) )  /\  (
( ( 2nd `  k
) " ( 1 ... j ) )  i^i  ( ( 2nd `  k ) " (
( j  +  1 ) ... M ) ) )  =  (/) )  ->  ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) )  Fn  (
( ( 2nd `  k
) " ( 1 ... j ) )  u.  ( ( 2nd `  k ) " (
( j  +  1 ) ... M ) ) ) )
247238, 245, 246sylancr 695 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  /\  j  e.  ( 0 ... M ) )  ->  ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) )  Fn  (
( ( 2nd `  k
) " ( 1 ... j ) )  u.  ( ( 2nd `  k ) " (
( j  +  1 ) ... M ) ) ) )
248235, 247sylan 488 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  ->  ( (
( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) )  Fn  (
( ( 2nd `  k
) " ( 1 ... j ) )  u.  ( ( 2nd `  k ) " (
( j  +  1 ) ... M ) ) ) )
249101adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  ->  ( (
( 2nd `  k
) " ( 1 ... ( M  + 
1 ) ) ) 
\  ( ( 2nd `  k ) " {
( M  +  1 ) } ) )  =  ( ( 1 ... ( M  + 
1 ) )  \  { ( M  + 
1 ) } ) )
25085ad3antlr 767 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  ->  ( ( 2nd `  k ) "
( ( 1 ... ( M  +  1 ) )  \  {
( M  +  1 ) } ) )  =  ( ( ( 2nd `  k )
" ( 1 ... ( M  +  1 ) ) )  \ 
( ( 2nd `  k
) " { ( M  +  1 ) } ) ) )
251186, 197syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( j  e.  ( 0 ... M )  ->  (
j  +  1 )  e.  NN )
252251, 198syl6eleq 2711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( j  e.  ( 0 ... M )  ->  (
j  +  1 )  e.  ( ZZ>= `  1
) )
253 fzsplit2 12366 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( j  +  1 )  e.  ( ZZ>= ` 
1 )  /\  M  e.  ( ZZ>= `  j )
)  ->  ( 1 ... M )  =  ( ( 1 ... j )  u.  (
( j  +  1 ) ... M ) ) )
254252, 202, 253syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( j  e.  ( 0 ... M )  ->  (
1 ... M )  =  ( ( 1 ... j )  u.  (
( j  +  1 ) ... M ) ) )
255128, 254sylan9eq 2676 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  ->  ( (
1 ... ( M  + 
1 ) )  \  { ( M  + 
1 ) } )  =  ( ( 1 ... j )  u.  ( ( j  +  1 ) ... M
) ) )
256255imaeq2d 5466 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  ->  ( ( 2nd `  k ) "
( ( 1 ... ( M  +  1 ) )  \  {
( M  +  1 ) } ) )  =  ( ( 2nd `  k ) " (
( 1 ... j
)  u.  ( ( j  +  1 ) ... M ) ) ) )
257250, 256eqtr3d 2658 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  ->  ( (
( 2nd `  k
) " ( 1 ... ( M  + 
1 ) ) ) 
\  ( ( 2nd `  k ) " {
( M  +  1 ) } ) )  =  ( ( 2nd `  k ) " (
( 1 ... j
)  u.  ( ( j  +  1 ) ... M ) ) ) )
258125ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  ->  ( (
1 ... ( M  + 
1 ) )  \  { ( M  + 
1 ) } )  =  ( 1 ... M ) )
259249, 257, 2583eqtr3rd 2665 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  ->  ( 1 ... M )  =  ( ( 2nd `  k
) " ( ( 1 ... j )  u.  ( ( j  +  1 ) ... M ) ) ) )
260 imaundi 5545 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 2nd `  k )
" ( ( 1 ... j )  u.  ( ( j  +  1 ) ... M
) ) )  =  ( ( ( 2nd `  k ) " (
1 ... j ) )  u.  ( ( 2nd `  k ) " (
( j  +  1 ) ... M ) ) )
261259, 260syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  ->  ( 1 ... M )  =  ( ( ( 2nd `  k ) " (
1 ... j ) )  u.  ( ( 2nd `  k ) " (
( j  +  1 ) ... M ) ) ) )
262261fneq2d 5982 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  ->  ( (
( ( ( 2nd `  k ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) )  Fn  (
1 ... M )  <->  ( (
( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) )  Fn  (
( ( 2nd `  k
) " ( 1 ... j ) )  u.  ( ( 2nd `  k ) " (
( j  +  1 ) ... M ) ) ) ) )
263248, 262mpbird 247 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  ->  ( (
( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) )  Fn  (
1 ... M ) )
264 fzss2 12381 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( M  e.  ( ZZ>= `  j
)  ->  ( 1 ... j )  C_  ( 1 ... M
) )
265 resima2 5432 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( 1 ... j ) 
C_  ( 1 ... M )  ->  (
( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( 1 ... j
) )  =  ( ( 2nd `  k
) " ( 1 ... j ) ) )
266202, 264, 2653syl 18 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( j  e.  ( 0 ... M )  ->  (
( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( 1 ... j
) )  =  ( ( 2nd `  k
) " ( 1 ... j ) ) )
267266xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( j  e.  ( 0 ... M )  ->  (
( ( ( 2nd `  k )  |`  (
1 ... M ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } ) )
268186, 199syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( j  e.  ( 0 ... M )  ->  (
j  +  1 )  e.  ( ZZ>= `  1
) )
269 fzss1 12380 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( j  +  1 )  e.  ( ZZ>= `  1
)  ->  ( (
j  +  1 ) ... M )  C_  ( 1 ... M
) )
270 resima2 5432 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( j  +  1 ) ... M ) 
C_  ( 1 ... M )  ->  (
( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( ( j  +  1 ) ... M
) )  =  ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) ) )
271268, 269, 2703syl 18 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( j  e.  ( 0 ... M )  ->  (
( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( ( j  +  1 ) ... M
) )  =  ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) ) )
272271xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( j  e.  ( 0 ... M )  ->  (
( ( ( 2nd `  k )  |`  (
1 ... M ) )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) )
273267, 272uneq12d 3768 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( j  e.  ( 0 ... M )  ->  (
( ( ( ( 2nd `  k )  |`  ( 1 ... M
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( ( j  +  1 ) ... M
) )  X.  {
0 } ) )  =  ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )
274273adantl 482 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  ->  ( (
( ( ( 2nd `  k )  |`  (
1 ... M ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( ( j  +  1 ) ... M
) )  X.  {
0 } ) )  =  ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )
275274fneq1d 5981 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  ->  ( (
( ( ( ( 2nd `  k )  |`  ( 1 ... M
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( ( j  +  1 ) ... M
) )  X.  {
0 } ) )  Fn  ( 1 ... M )  <->  ( (
( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) )  Fn  (
1 ... M ) ) )
276263, 275mpbird 247 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  ->  ( (
( ( ( 2nd `  k )  |`  (
1 ... M ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( ( j  +  1 ) ... M
) )  X.  {
0 } ) )  Fn  ( 1 ... M ) )
277 fzfid 12772 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  ->  ( 1 ... M )  e. 
Fin )
278 inidm 3822 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1 ... M )  i^i  ( 1 ... M ) )  =  ( 1 ... M
)
279 fvres 6207 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  ( 1 ... M )  ->  (
( ( 1st `  k
)  |`  ( 1 ... M ) ) `  n )  =  ( ( 1st `  k
) `  n )
)
280279adantl 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  /\  n  e.  ( 1 ... M
) )  ->  (
( ( 1st `  k
)  |`  ( 1 ... M ) ) `  n )  =  ( ( 1st `  k
) `  n )
)
281 disjsn 4246 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( 1 ... M
)  i^i  { ( M  +  1 ) } )  =  (/)  <->  -.  ( M  +  1
)  e.  ( 1 ... M ) )
282122, 281sylibr 224 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( ( 1 ... M )  i^i  {
( M  +  1 ) } )  =  (/) )
283282ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  ->  ( (
1 ... M )  i^i 
{ ( M  + 
1 ) } )  =  (/) )
284263, 283jca 554 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  ->  ( (
( ( ( 2nd `  k ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) )  Fn  (
1 ... M )  /\  ( ( 1 ... M )  i^i  {
( M  +  1 ) } )  =  (/) ) )
285 fnconstg 6093 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( 0  e.  _V  ->  ( { ( M  + 
1 ) }  X.  { 0 } )  Fn  { ( M  +  1 ) } )
286166, 285ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( { ( M  +  1 ) }  X.  {
0 } )  Fn 
{ ( M  + 
1 ) }
287 fvun1 6269 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) )  Fn  ( 1 ... M )  /\  ( { ( M  + 
1 ) }  X.  { 0 } )  Fn  { ( M  +  1 ) }  /\  ( ( ( 1 ... M )  i^i  { ( M  +  1 ) } )  =  (/)  /\  n  e.  ( 1 ... M
) ) )  -> 
( ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) )  u.  ( { ( M  + 
1 ) }  X.  { 0 } ) ) `  n )  =  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) `  n
) )
288286, 287mp3an2 1412 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) )  Fn  ( 1 ... M )  /\  ( ( ( 1 ... M )  i^i 
{ ( M  + 
1 ) } )  =  (/)  /\  n  e.  ( 1 ... M
) ) )  -> 
( ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) )  u.  ( { ( M  + 
1 ) }  X.  { 0 } ) ) `  n )  =  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) `  n
) )
289288anassrs 680 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) )  Fn  (
1 ... M )  /\  ( ( 1 ... M )  i^i  {
( M  +  1 ) } )  =  (/) )  /\  n  e.  ( 1 ... M
) )  ->  (
( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) )  u.  ( { ( M  + 
1 ) }  X.  { 0 } ) ) `  n )  =  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) `  n
) )
290284, 289sylan 488 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  /\  n  e.  ( 1 ... M
) )  ->  (
( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) )  u.  ( { ( M  + 
1 ) }  X.  { 0 } ) ) `  n )  =  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) `  n
) )
291251nnzd 11481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( j  e.  ( 0 ... M )  ->  (
j  +  1 )  e.  ZZ )
292186nn0cnd 11353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( j  e.  ( 0 ... M )  ->  j  e.  CC )
293 pncan1 10454 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( j  e.  CC  ->  (
( j  +  1 )  -  1 )  =  j )
294292, 293syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( j  e.  ( 0 ... M )  ->  (
( j  +  1 )  -  1 )  =  j )
295294fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( j  e.  ( 0 ... M )  ->  ( ZZ>=
`  ( ( j  +  1 )  - 
1 ) )  =  ( ZZ>= `  j )
)
296202, 295eleqtrrd 2704 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( j  e.  ( 0 ... M )  ->  M  e.  ( ZZ>= `  ( (
j  +  1 )  -  1 ) ) )
297 fzsuc2 12398 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( j  +  1 )  e.  ZZ  /\  M  e.  ( ZZ>= `  ( ( j  +  1 )  -  1 ) ) )  -> 
( ( j  +  1 ) ... ( M  +  1 ) )  =  ( ( ( j  +  1 ) ... M )  u.  { ( M  +  1 ) } ) )
298291, 296, 297syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( j  e.  ( 0 ... M )  ->  (
( j  +  1 ) ... ( M  +  1 ) )  =  ( ( ( j  +  1 ) ... M )  u. 
{ ( M  + 
1 ) } ) )
299298imaeq2d 5466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( j  e.  ( 0 ... M )  ->  (
( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  =  ( ( 2nd `  k ) " (
( ( j  +  1 ) ... M
)  u.  { ( M  +  1 ) } ) ) )
300 imaundi 5545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( 2nd `  k )
" ( ( ( j  +  1 ) ... M )  u. 
{ ( M  + 
1 ) } ) )  =  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) )  u.  ( ( 2nd `  k ) " {
( M  +  1 ) } ) )
301299, 300syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( j  e.  ( 0 ... M )  ->  (
( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  =  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... M ) )  u.  ( ( 2nd `  k
) " { ( M  +  1 ) } ) ) )
302301xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( j  e.  ( 0 ... M )  ->  (
( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } )  =  ( ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) )  u.  ( ( 2nd `  k ) " {
( M  +  1 ) } ) )  X.  { 0 } ) )
303 xpundir 5172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) )  u.  ( ( 2nd `  k ) " {
( M  +  1 ) } ) )  X.  { 0 } )  =  ( ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } )  u.  ( ( ( 2nd `  k
) " { ( M  +  1 ) } )  X.  {
0 } ) )
304302, 303syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( j  e.  ( 0 ... M )  ->  (
( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } )  =  ( ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } )  u.  ( ( ( 2nd `  k
) " { ( M  +  1 ) } )  X.  {
0 } ) ) )
305304uneq2d 3767 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( j  e.  ( 0 ... M )  ->  (
( ( ( 2nd `  k ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) )  =  ( ( ( ( 2nd `  k ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } )  u.  ( ( ( 2nd `  k
) " { ( M  +  1 ) } )  X.  {
0 } ) ) ) )
306 unass 3770 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ( 2nd `  k ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) )  u.  (
( ( 2nd `  k
) " { ( M  +  1 ) } )  X.  {
0 } ) )  =  ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } )  u.  ( ( ( 2nd `  k
) " { ( M  +  1 ) } )  X.  {
0 } ) ) )
307305, 306syl6eqr 2674 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( j  e.  ( 0 ... M )  ->  (
( ( ( 2nd `  k ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) )  =  ( ( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) )  u.  ( ( ( 2nd `  k
) " { ( M  +  1 ) } )  X.  {
0 } ) ) )
308307adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  j  e.  ( 0 ... M
) )  ->  (
( ( ( 2nd `  k ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) )  =  ( ( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) )  u.  ( ( ( 2nd `  k
) " { ( M  +  1 ) } )  X.  {
0 } ) ) )
30998xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  ->  ( { ( ( 2nd `  k ) `  ( M  +  1 ) ) }  X.  {
0 } )  =  ( ( ( 2nd `  k ) " {
( M  +  1 ) } )  X. 
{ 0 } ) )
310309uneq2d 3767 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  ->  (
( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) )  u.  ( { ( ( 2nd `  k
) `  ( M  +  1 ) ) }  X.  { 0 } ) )  =  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) )  u.  (
( ( 2nd `  k
) " { ( M  +  1 ) } )  X.  {
0 } ) ) )
311310adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  j  e.  ( 0 ... M
) )  ->  (
( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) )  u.  ( { ( ( 2nd `  k
) `  ( M  +  1 ) ) }  X.  { 0 } ) )  =  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) )  u.  (
( ( 2nd `  k
) " { ( M  +  1 ) } )  X.  {
0 } ) ) )
312308, 311eqtr4d 2659 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  j  e.  ( 0 ... M
) )  ->  (
( ( ( 2nd `  k ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) )  =  ( ( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) )  u.  ( { ( ( 2nd `  k
) `  ( M  +  1 ) ) }  X.  { 0 } ) ) )
31399xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 )  ->  ( { ( ( 2nd `  k ) `  ( M  +  1 ) ) }  X.  {
0 } )  =  ( { ( M  +  1 ) }  X.  { 0 } ) )
314313uneq2d 3767 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 )  ->  (
( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) )  u.  ( { ( ( 2nd `  k
) `  ( M  +  1 ) ) }  X.  { 0 } ) )  =  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) )  u.  ( { ( M  + 
1 ) }  X.  { 0 } ) ) )
315312, 314sylan9eq 2676 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  j  e.  ( 0 ... M ) )  /\  ( ( 2nd `  k ) `
 ( M  + 
1 ) )  =  ( M  +  1 ) )  ->  (
( ( ( 2nd `  k ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) )  =  ( ( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) )  u.  ( { ( M  +  1 ) }  X.  {
0 } ) ) )
316315an32s 846 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  ->  ( (
( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) )  =  ( ( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) )  u.  ( { ( M  +  1 ) }  X.  {
0 } ) ) )
317316fveq1d 6193 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  ->  ( (
( ( ( 2nd `  k ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  n
)  =  ( ( ( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) )  u.  ( { ( M  +  1 ) }  X.  {
0 } ) ) `
 n ) )
318317adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  /\  n  e.  ( 1 ... M
) )  ->  (
( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) `  n )  =  ( ( ( ( ( ( 2nd `  k ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) )  u.  ( { ( M  + 
1 ) }  X.  { 0 } ) ) `  n ) )
319273fveq1d 6193 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( j  e.  ( 0 ... M )  ->  (
( ( ( ( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( 1 ... j
) )  X.  {
1 } )  u.  ( ( ( ( 2nd `  k )  |`  ( 1 ... M
) ) " (
( j  +  1 ) ... M ) )  X.  { 0 } ) ) `  n )  =  ( ( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) `  n ) )
320319ad2antlr 763 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  /\  n  e.  ( 1 ... M
) )  ->  (
( ( ( ( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( 1 ... j
) )  X.  {
1 } )  u.  ( ( ( ( 2nd `  k )  |`  ( 1 ... M
) ) " (
( j  +  1 ) ... M ) )  X.  { 0 } ) ) `  n )  =  ( ( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) `  n ) )
321290, 318, 3203eqtr4rd 2667 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  /\  n  e.  ( 1 ... M
) )  ->  (
( ( ( ( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( 1 ... j
) )  X.  {
1 } )  u.  ( ( ( ( 2nd `  k )  |`  ( 1 ... M
) ) " (
( j  +  1 ) ... M ) )  X.  { 0 } ) ) `  n )  =  ( ( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) `  n ) )
322234, 276, 277, 277, 278, 280, 321offval 6904 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  ->  ( (
( 1st `  k
)  |`  ( 1 ... M ) )  oF  +  ( ( ( ( ( 2nd `  k )  |`  (
1 ... M ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( ( j  +  1 ) ... M
) )  X.  {
0 } ) ) )  =  ( n  e.  ( 1 ... M )  |->  ( ( ( 1st `  k
) `  n )  +  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  n
) ) ) )
323322uneq1d 3766 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( 2nd `  k ) `  ( M  +  1 ) )  =  ( M  +  1 ) )  /\  j  e.  ( 0 ... M ) )  ->  ( (
( ( 1st `  k
)  |`  ( 1 ... M ) )  oF  +  ( ( ( ( ( 2nd `  k )  |`  (
1 ... M ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( ( j  +  1 ) ... M
) )  X.  {
0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  { 0 } ) )  =  ( ( n  e.  ( 1 ... M ) 
|->  ( ( ( 1st `  k ) `  n
)  +  ( ( ( ( ( 2nd `  k ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  n
) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) ) )
324323adantlrl 756 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( ( 1st `  k ) `
 ( M  + 
1 ) )  =  0  /\  ( ( 2nd `  k ) `
 ( M  + 
1 ) )  =  ( M  +  1 ) ) )  /\  j  e.  ( 0 ... M ) )  ->  ( ( ( ( 1st `  k
)  |`  ( 1 ... M ) )  oF  +  ( ( ( ( ( 2nd `  k )  |`  (
1 ... M ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( ( j  +  1 ) ... M
) )  X.  {
0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  { 0 } ) )  =  ( ( n  e.  ( 1 ... M ) 
|->  ( ( ( 1st `  k ) `  n
)  +  ( ( ( ( ( 2nd `  k ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  n
) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) ) )
325 simplr 792 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  (
( ( 1st `  k
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) ) )  ->  k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )
326231adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  /\  j  e.  ( 0 ... M ) )  ->  ( 1st `  k
)  Fn  ( 1 ... ( M  + 
1 ) ) )
327213, 215pm3.2i 471 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  Fn  ( ( 2nd `  k )
" ( 1 ... j ) )  /\  ( ( ( 2nd `  k ) " (
( j  +  1 ) ... ( M  +  1 ) ) )  X.  { 0 } )  Fn  (
( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) ) )
328184, 193sylan9req 2677 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  /\  j  e.  ( 0 ... M ) )  ->  ( ( ( 2nd `  k )
" ( 1 ... j ) )  i^i  ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) ) )  =  (/) )
329 fnun 5997 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  k ) " (
1 ... j ) )  /\  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  k ) " (
( j  +  1 ) ... ( M  +  1 ) ) ) )  /\  (
( ( 2nd `  k
) " ( 1 ... j ) )  i^i  ( ( 2nd `  k ) " (
( j  +  1 ) ... ( M  +  1 ) ) ) )  =  (/) )  ->  ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) )  Fn  (
( ( 2nd `  k
) " ( 1 ... j ) )  u.  ( ( 2nd `  k ) " (
( j  +  1 ) ... ( M  +  1 ) ) ) ) )
330327, 328, 329sylancr 695 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  /\  j  e.  ( 0 ... M ) )  ->  ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) )  Fn  (
( ( 2nd `  k
) " ( 1 ... j ) )  u.  ( ( 2nd `  k ) " (
( j  +  1 ) ... ( M  +  1 ) ) ) ) )
331 peano2uz 11741 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( M  e.  ( ZZ>= `  j
)  ->  ( M  +  1 )  e.  ( ZZ>= `  j )
)
332202, 331syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( j  e.  ( 0 ... M )  ->  ( M  +  1 )  e.  ( ZZ>= `  j
) )
333 fzsplit2 12366 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( j  +  1 )  e.  ( ZZ>= ` 
1 )  /\  ( M  +  1 )  e.  ( ZZ>= `  j
) )  ->  (
1 ... ( M  + 
1 ) )  =  ( ( 1 ... j )  u.  (
( j  +  1 ) ... ( M  +  1 ) ) ) )
334268, 332, 333syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( j  e.  ( 0 ... M )  ->  (
1 ... ( M  + 
1 ) )  =  ( ( 1 ... j )  u.  (
( j  +  1 ) ... ( M  +  1 ) ) ) )
335334imaeq2d 5466 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( j  e.  ( 0 ... M )  ->  (
( 2nd `  k
) " ( 1 ... ( M  + 
1 ) ) )  =  ( ( 2nd `  k ) " (
( 1 ... j
)  u.  ( ( j  +  1 ) ... ( M  + 
1 ) ) ) ) )
336 imaundi 5545 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 2nd `  k )
" ( ( 1 ... j )  u.  ( ( j  +  1 ) ... ( M  +  1 ) ) ) )  =  ( ( ( 2nd `  k ) " (
1 ... j ) )  u.  ( ( 2nd `  k ) " (
( j  +  1 ) ... ( M  +  1 ) ) ) )
337335, 336syl6req 2673 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( j  e.  ( 0 ... M )  ->  (
( ( 2nd `  k
) " ( 1 ... j ) )  u.  ( ( 2nd `  k ) " (
( j  +  1 ) ... ( M  +  1 ) ) ) )  =  ( ( 2nd `  k
) " ( 1 ... ( M  + 
1 ) ) ) )
338337, 89sylan9eqr 2678 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  /\  j  e.  ( 0 ... M ) )  ->  ( ( ( 2nd `  k )
" ( 1 ... j ) )  u.  ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) ) )  =  ( 1 ... ( M  + 
1 ) ) )
339338fneq2d 5982 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  /\  j  e.  ( 0 ... M ) )  ->  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) )  Fn  (
( ( 2nd `  k
) " ( 1 ... j ) )  u.  ( ( 2nd `  k ) " (
( j  +  1 ) ... ( M  +  1 ) ) ) )  <->  ( (
( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) )  Fn  (
1 ... ( M  + 
1 ) ) ) )
340330, 339mpbid 222 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  /\  j  e.  ( 0 ... M ) )  ->  ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) )  Fn  (
1 ... ( M  + 
1 ) ) )
341 fzfid 12772 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  /\  j  e.  ( 0 ... M ) )  ->  ( 1 ... ( M  +  1 ) )  e.  Fin )
342 inidm 3822 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1 ... ( M  +  1 ) )  i^i  ( 1 ... ( M  +  1 ) ) )  =  ( 1 ... ( M  +  1 ) )
343 eqidd 2623 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } )  /\  j  e.  ( 0 ... M
) )  /\  n  e.  ( 1 ... ( M  +  1 ) ) )  ->  (
( 1st `  k
) `  n )  =  ( ( 1st `  k ) `  n
) )
344 eqidd 2623 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } )  /\  j  e.  ( 0 ... M
) )  /\  n  e.  ( 1 ... ( M  +  1 ) ) )  ->  (
( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) `  n )  =  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  n
) )
345326, 340, 341, 341, 342, 343, 344offval 6904 . . . . . . . . . . . . . . . . . . 19  |-  ( ( k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  /\  j  e.  ( 0 ... M ) )  ->  ( ( 1st `  k )  oF  +  ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) )  =  ( n  e.  ( 1 ... ( M  +  1 ) ) 
|->  ( ( ( 1st `  k ) `  n
)  +  ( ( ( ( ( 2nd `  k ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  n
) ) ) )
346345uneq1d 3766 . . . . . . . . . . . . . . . . . 18  |-  ( ( k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  /\  j  e.  ( 0 ... M ) )  ->  ( ( ( 1st `  k )  oF  +  ( ( ( ( 2nd `  k ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  =  ( ( n  e.  ( 1 ... ( M  +  1 ) )  |->  ( ( ( 1st `  k
) `  n )  +  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  n
) ) )  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) )
347325, 346sylan 488 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( ( 1st `  k ) `
 ( M  + 
1 ) )  =  0  /\  ( ( 2nd `  k ) `
 ( M  + 
1 ) )  =  ( M  +  1 ) ) )  /\  j  e.  ( 0 ... M ) )  ->  ( ( ( 1st `  k )  oF  +  ( ( ( ( 2nd `  k ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  =  ( ( n  e.  ( 1 ... ( M  +  1 ) )  |->  ( ( ( 1st `  k
) `  n )  +  ( ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) `  n
) ) )  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) )
348229, 324, 3473eqtr4rd 2667 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( ( 1st `  k ) `
 ( M  + 
1 ) )  =  0  /\  ( ( 2nd `  k ) `
 ( M  + 
1 ) )  =  ( M  +  1 ) ) )  /\  j  e.  ( 0 ... M ) )  ->  ( ( ( 1st `  k )  oF  +  ( ( ( ( 2nd `  k ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  =  ( ( ( ( 1st `  k
)  |`  ( 1 ... M ) )  oF  +  ( ( ( ( ( 2nd `  k )  |`  (
1 ... M ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( ( j  +  1 ) ... M
) )  X.  {
0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  { 0 } ) ) )
349348csbeq1d 3540 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( ( 1st `  k ) `
 ( M  + 
1 ) )  =  0  /\  ( ( 2nd `  k ) `
 ( M  + 
1 ) )  =  ( M  +  1 ) ) )  /\  j  e.  ( 0 ... M ) )  ->  [_ ( ( ( 1st `  k )  oF  +  ( ( ( ( 2nd `  k ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  =  [_ ( ( ( ( 1st `  k
)  |`  ( 1 ... M ) )  oF  +  ( ( ( ( ( 2nd `  k )  |`  (
1 ... M ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( ( j  +  1 ) ... M
) )  X.  {
0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  { 0 } ) )  /  p ]_ B )
350349eqeq2d 2632 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  ( (
( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } ) )  /\  ( ( ( 1st `  k ) `
 ( M  + 
1 ) )  =  0  /\  ( ( 2nd `  k ) `
 ( M  + 
1 ) )  =  ( M  +  1 ) ) )  /\  j  e.  ( 0 ... M ) )  ->  ( i  = 
[_ ( ( ( 1st `  k )  oF  +  ( ( ( ( 2nd `  k ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  <->  i  =  [_ ( ( ( ( 1st `  k
)  |`  ( 1 ... M ) )  oF  +  ( ( ( ( ( 2nd `  k )  |`  (
1 ... M ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( ( j  +  1 ) ... M
) )  X.  {
0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  { 0 } ) )  /  p ]_ B ) )
351350rexbidva 3049 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  (
( ( 1st `  k
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) ) )  ->  ( E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  k )  oF  +  ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  <->  E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( ( 1st `  k
)  |`  ( 1 ... M ) )  oF  +  ( ( ( ( ( 2nd `  k )  |`  (
1 ... M ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( ( j  +  1 ) ... M
) )  X.  {
0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  { 0 } ) )  /  p ]_ B ) )
352351ralbidv 2986 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  (
( ( 1st `  k
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) ) )  ->  ( A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  k )  oF  +  ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  <->  A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( ( 1st `  k
)  |`  ( 1 ... M ) )  oF  +  ( ( ( ( ( 2nd `  k )  |`  (
1 ... M ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( ( j  +  1 ) ... M
) )  X.  {
0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  { 0 } ) )  /  p ]_ B ) )
353352biimpd 219 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  (
( ( 1st `  k
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) ) )  ->  ( A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  k )  oF  +  ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  ->  A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ (
( ( ( 1st `  k )  |`  (
1 ... M ) )  oF  +  ( ( ( ( ( 2nd `  k )  |`  ( 1 ... M
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( ( j  +  1 ) ... M
) )  X.  {
0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  { 0 } ) )  /  p ]_ B ) )
354353impr 649 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  (
( ( ( 1st `  k ) `  ( M  +  1 ) )  =  0  /\  ( ( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) )  /\  A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( 1st `  k
)  oF  +  ( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B ) )  ->  A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ (
( ( ( 1st `  k )  |`  (
1 ... M ) )  oF  +  ( ( ( ( ( 2nd `  k )  |`  ( 1 ... M
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( ( j  +  1 ) ... M
) )  X.  {
0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  { 0 } ) )  /  p ]_ B )
355142, 354sylan2b 492 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  ( A. i  e.  (
0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( 1st `  k
)  oF  +  ( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  k
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) ) )  ->  A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ (
( ( ( 1st `  k )  |`  (
1 ... M ) )  oF  +  ( ( ( ( ( 2nd `  k )  |`  ( 1 ... M
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( ( j  +  1 ) ... M
) )  X.  {
0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  { 0 } ) )  /  p ]_ B )
356 1st2nd2 7205 . . . . . . . . . . . 12  |-  ( k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X.  {
f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  -> 
k  =  <. ( 1st `  k ) ,  ( 2nd `  k
) >. )
357356ad2antlr 763 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  (
( ( 1st `  k
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) ) )  ->  k  =  <. ( 1st `  k ) ,  ( 2nd `  k
) >. )
358 fnsnsplit 6450 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1st `  k
)  Fn  ( 1 ... ( M  + 
1 ) )  /\  ( M  +  1
)  e.  ( 1 ... ( M  + 
1 ) ) )  ->  ( 1st `  k
)  =  ( ( ( 1st `  k
)  |`  ( ( 1 ... ( M  + 
1 ) )  \  { ( M  + 
1 ) } ) )  u.  { <. ( M  +  1 ) ,  ( ( 1st `  k ) `  ( M  +  1 ) ) >. } ) )
359231, 96, 358syl2anr 495 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  ->  ( 1st `  k )  =  ( ( ( 1st `  k )  |`  (
( 1 ... ( M  +  1 ) )  \  { ( M  +  1 ) } ) )  u. 
{ <. ( M  + 
1 ) ,  ( ( 1st `  k
) `  ( M  +  1 ) )
>. } ) )
360359adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  (
( 1st `  k
) `  ( M  +  1 ) )  =  0 )  -> 
( 1st `  k
)  =  ( ( ( 1st `  k
)  |`  ( ( 1 ... ( M  + 
1 ) )  \  { ( M  + 
1 ) } ) )  u.  { <. ( M  +  1 ) ,  ( ( 1st `  k ) `  ( M  +  1 ) ) >. } ) )
361125reseq2d 5396 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 1st `  k
)  |`  ( ( 1 ... ( M  + 
1 ) )  \  { ( M  + 
1 ) } ) )  =  ( ( 1st `  k )  |`  ( 1 ... M
) ) )
362361adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  ->  (
( 1st `  k
)  |`  ( ( 1 ... ( M  + 
1 ) )  \  { ( M  + 
1 ) } ) )  =  ( ( 1st `  k )  |`  ( 1 ... M
) ) )
363 opeq2 4403 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1st `  k
) `  ( M  +  1 ) )  =  0  ->  <. ( M  +  1 ) ,  ( ( 1st `  k ) `  ( M  +  1 ) ) >.  =  <. ( M  +  1 ) ,  0 >. )
364363sneqd 4189 . . . . . . . . . . . . . . 15  |-  ( ( ( 1st `  k
) `  ( M  +  1 ) )  =  0  ->  { <. ( M  +  1 ) ,  ( ( 1st `  k ) `  ( M  +  1 ) ) >. }  =  { <. ( M  +  1 ) ,  0 >. } )
365 uneq12 3762 . . . . . . . . . . . . . . 15  |-  ( ( ( ( 1st `  k
)  |`  ( ( 1 ... ( M  + 
1 ) )  \  { ( M  + 
1 ) } ) )  =  ( ( 1st `  k )  |`  ( 1 ... M
) )  /\  { <. ( M  +  1 ) ,  ( ( 1st `  k ) `
 ( M  + 
1 ) ) >. }  =  { <. ( M  +  1 ) ,  0 >. } )  ->  ( ( ( 1st `  k )  |`  ( ( 1 ... ( M  +  1 ) )  \  {
( M  +  1 ) } ) )  u.  { <. ( M  +  1 ) ,  ( ( 1st `  k ) `  ( M  +  1 ) ) >. } )  =  ( ( ( 1st `  k )  |`  (
1 ... M ) )  u.  { <. ( M  +  1 ) ,  0 >. } ) )
366362, 364, 365syl2an 494 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  (
( 1st `  k
) `  ( M  +  1 ) )  =  0 )  -> 
( ( ( 1st `  k )  |`  (
( 1 ... ( M  +  1 ) )  \  { ( M  +  1 ) } ) )  u. 
{ <. ( M  + 
1 ) ,  ( ( 1st `  k
) `  ( M  +  1 ) )
>. } )  =  ( ( ( 1st `  k
)  |`  ( 1 ... M ) )  u. 
{ <. ( M  + 
1 ) ,  0
>. } ) )
367360, 366eqtrd 2656 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  (
( 1st `  k
) `  ( M  +  1 ) )  =  0 )  -> 
( 1st `  k
)  =  ( ( ( 1st `  k
)  |`  ( 1 ... M ) )  u. 
{ <. ( M  + 
1 ) ,  0
>. } ) )
368367adantrr 753 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  (
( ( 1st `  k
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) ) )  ->  ( 1st `  k
)  =  ( ( ( 1st `  k
)  |`  ( 1 ... M ) )  u. 
{ <. ( M  + 
1 ) ,  0
>. } ) )
369 fnsnsplit 6450 . . . . . . . . . . . . . . . 16  |-  ( ( ( 2nd `  k
)  Fn  ( 1 ... ( M  + 
1 ) )  /\  ( M  +  1
)  e.  ( 1 ... ( M  + 
1 ) ) )  ->  ( 2nd `  k
)  =  ( ( ( 2nd `  k
)  |`  ( ( 1 ... ( M  + 
1 ) )  \  { ( M  + 
1 ) } ) )  u.  { <. ( M  +  1 ) ,  ( ( 2nd `  k ) `  ( M  +  1 ) ) >. } ) )
37092, 96, 369syl2anr 495 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  ->  ( 2nd `  k )  =  ( ( ( 2nd `  k )  |`  (
( 1 ... ( M  +  1 ) )  \  { ( M  +  1 ) } ) )  u. 
{ <. ( M  + 
1 ) ,  ( ( 2nd `  k
) `  ( M  +  1 ) )
>. } ) )
371370adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) )  -> 
( 2nd `  k
)  =  ( ( ( 2nd `  k
)  |`  ( ( 1 ... ( M  + 
1 ) )  \  { ( M  + 
1 ) } ) )  u.  { <. ( M  +  1 ) ,  ( ( 2nd `  k ) `  ( M  +  1 ) ) >. } ) )
372125reseq2d 5396 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 2nd `  k
)  |`  ( ( 1 ... ( M  + 
1 ) )  \  { ( M  + 
1 ) } ) )  =  ( ( 2nd `  k )  |`  ( 1 ... M
) ) )
373372adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  ->  (
( 2nd `  k
)  |`  ( ( 1 ... ( M  + 
1 ) )  \  { ( M  + 
1 ) } ) )  =  ( ( 2nd `  k )  |`  ( 1 ... M
) ) )
374 opeq2 4403 . . . . . . . . . . . . . . . 16  |-  ( ( ( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 )  ->  <. ( M  +  1 ) ,  ( ( 2nd `  k ) `  ( M  +  1 ) ) >.  =  <. ( M  +  1 ) ,  ( M  + 
1 ) >. )
375374sneqd 4189 . . . . . . . . . . . . . . 15  |-  ( ( ( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 )  ->  { <. ( M  +  1 ) ,  ( ( 2nd `  k ) `  ( M  +  1 ) ) >. }  =  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } )
376 uneq12 3762 . . . . . . . . . . . . . . 15  |-  ( ( ( ( 2nd `  k
)  |`  ( ( 1 ... ( M  + 
1 ) )  \  { ( M  + 
1 ) } ) )  =  ( ( 2nd `  k )  |`  ( 1 ... M
) )  /\  { <. ( M  +  1 ) ,  ( ( 2nd `  k ) `
 ( M  + 
1 ) ) >. }  =  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )  ->  ( ( ( 2nd `  k )  |`  ( ( 1 ... ( M  +  1 ) )  \  {
( M  +  1 ) } ) )  u.  { <. ( M  +  1 ) ,  ( ( 2nd `  k ) `  ( M  +  1 ) ) >. } )  =  ( ( ( 2nd `  k )  |`  (
1 ... M ) )  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } ) )
377373, 375, 376syl2an 494 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) )  -> 
( ( ( 2nd `  k )  |`  (
( 1 ... ( M  +  1 ) )  \  { ( M  +  1 ) } ) )  u. 
{ <. ( M  + 
1 ) ,  ( ( 2nd `  k
) `  ( M  +  1 ) )
>. } )  =  ( ( ( 2nd `  k
)  |`  ( 1 ... M ) )  u. 
{ <. ( M  + 
1 ) ,  ( M  +  1 )
>. } ) )
378371, 377eqtrd 2656 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) )  -> 
( 2nd `  k
)  =  ( ( ( 2nd `  k
)  |`  ( 1 ... M ) )  u. 
{ <. ( M  + 
1 ) ,  ( M  +  1 )
>. } ) )
379378adantrl 752 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  (
( ( 1st `  k
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) ) )  ->  ( 2nd `  k
)  =  ( ( ( 2nd `  k
)  |`  ( 1 ... M ) )  u. 
{ <. ( M  + 
1 ) ,  ( M  +  1 )
>. } ) )
380368, 379opeq12d 4410 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  (
( ( 1st `  k
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) ) )  ->  <. ( 1st `  k
) ,  ( 2nd `  k ) >.  =  <. ( ( ( 1st `  k
)  |`  ( 1 ... M ) )  u. 
{ <. ( M  + 
1 ) ,  0
>. } ) ,  ( ( ( 2nd `  k
)  |`  ( 1 ... M ) )  u. 
{ <. ( M  + 
1 ) ,  ( M  +  1 )
>. } ) >. )
381357, 380eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  (
( ( 1st `  k
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) ) )  ->  k  =  <. ( ( ( 1st `  k
)  |`  ( 1 ... M ) )  u. 
{ <. ( M  + 
1 ) ,  0
>. } ) ,  ( ( ( 2nd `  k
)  |`  ( 1 ... M ) )  u. 
{ <. ( M  + 
1 ) ,  ( M  +  1 )
>. } ) >. )
3823813adantr1 1220 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  ( A. i  e.  (
0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( 1st `  k
)  oF  +  ( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  k
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) ) )  ->  k  =  <. ( ( ( 1st `  k
)  |`  ( 1 ... M ) )  u. 
{ <. ( M  + 
1 ) ,  0
>. } ) ,  ( ( ( 2nd `  k
)  |`  ( 1 ... M ) )  u. 
{ <. ( M  + 
1 ) ,  ( M  +  1 )
>. } ) >. )
383 fvex 6201 . . . . . . . . . . . . . . . . . . 19  |-  ( 1st `  k )  e.  _V
384383resex 5443 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1st `  k )  |`  ( 1 ... M
) )  e.  _V
385384, 133op1std 7178 . . . . . . . . . . . . . . . . 17  |-  ( t  =  <. ( ( 1st `  k )  |`  (
1 ... M ) ) ,  ( ( 2nd `  k )  |`  (
1 ... M ) )
>.  ->  ( 1st `  t
)  =  ( ( 1st `  k )  |`  ( 1 ... M
) ) )
386384, 133op2ndd 7179 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  =  <. ( ( 1st `  k )  |`  (
1 ... M ) ) ,  ( ( 2nd `  k )  |`  (
1 ... M ) )
>.  ->  ( 2nd `  t
)  =  ( ( 2nd `  k )  |`  ( 1 ... M
) ) )
387386imaeq1d 5465 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  <. ( ( 1st `  k )  |`  (
1 ... M ) ) ,  ( ( 2nd `  k )  |`  (
1 ... M ) )
>.  ->  ( ( 2nd `  t ) " (
1 ... j ) )  =  ( ( ( 2nd `  k )  |`  ( 1 ... M
) ) " (
1 ... j ) ) )
388387xpeq1d 5138 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  <. ( ( 1st `  k )  |`  (
1 ... M ) ) ,  ( ( 2nd `  k )  |`  (
1 ... M ) )
>.  ->  ( ( ( 2nd `  t )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( 1 ... j
) )  X.  {
1 } ) )
389386imaeq1d 5465 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  <. ( ( 1st `  k )  |`  (
1 ... M ) ) ,  ( ( 2nd `  k )  |`  (
1 ... M ) )
>.  ->  ( ( 2nd `  t ) " (
( j  +  1 ) ... M ) )  =  ( ( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( ( j  +  1 ) ... M
) ) )
390389xpeq1d 5138 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  <. ( ( 1st `  k )  |`  (
1 ... M ) ) ,  ( ( 2nd `  k )  |`  (
1 ... M ) )
>.  ->  ( ( ( 2nd `  t )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } )  =  ( ( ( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( ( j  +  1 ) ... M
) )  X.  {
0 } ) )
391388, 390uneq12d 3768 . . . . . . . . . . . . . . . . 17  |-  ( t  =  <. ( ( 1st `  k )  |`  (
1 ... M ) ) ,  ( ( 2nd `  k )  |`  (
1 ... M ) )
>.  ->  ( ( ( ( 2nd `  t
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  t
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) )  =  ( ( ( ( ( 2nd `  k )  |`  ( 1 ... M
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( ( j  +  1 ) ... M
) )  X.  {
0 } ) ) )
392385, 391oveq12d 6668 . . . . . . . . . . . . . . . 16  |-  ( t  =  <. ( ( 1st `  k )  |`  (
1 ... M ) ) ,  ( ( 2nd `  k )  |`  (
1 ... M ) )
>.  ->  ( ( 1st `  t )  oF  +  ( ( ( ( 2nd `  t
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  t
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  =  ( ( ( 1st `  k )  |`  (
1 ... M ) )  oF  +  ( ( ( ( ( 2nd `  k )  |`  ( 1 ... M
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( ( j  +  1 ) ... M
) )  X.  {
0 } ) ) ) )
393392uneq1d 3766 . . . . . . . . . . . . . . 15  |-  ( t  =  <. ( ( 1st `  k )  |`  (
1 ... M ) ) ,  ( ( 2nd `  k )  |`  (
1 ... M ) )
>.  ->  ( ( ( 1st `  t )  oF  +  ( ( ( ( 2nd `  t ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  t
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  =  ( ( ( ( 1st `  k
)  |`  ( 1 ... M ) )  oF  +  ( ( ( ( ( 2nd `  k )  |`  (
1 ... M ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( ( j  +  1 ) ... M
) )  X.  {
0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  { 0 } ) ) )
394393csbeq1d 3540 . . . . . . . . . . . . . 14  |-  ( t  =  <. ( ( 1st `  k )  |`  (
1 ... M ) ) ,  ( ( 2nd `  k )  |`  (
1 ... M ) )
>.  ->  [_ ( ( ( 1st `  t )  oF  +  ( ( ( ( 2nd `  t ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  t
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  =  [_ ( ( ( ( 1st `  k
)  |`  ( 1 ... M ) )  oF  +  ( ( ( ( ( 2nd `  k )  |`  (
1 ... M ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( ( j  +  1 ) ... M
) )  X.  {
0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  { 0 } ) )  /  p ]_ B )
395394eqeq2d 2632 . . . . . . . . . . . . 13  |-  ( t  =  <. ( ( 1st `  k )  |`  (
1 ... M ) ) ,  ( ( 2nd `  k )  |`  (
1 ... M ) )
>.  ->  ( i  = 
[_ ( ( ( 1st `  t )  oF  +  ( ( ( ( 2nd `  t ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  t
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  <->  i  =  [_ ( ( ( ( 1st `  k
)  |`  ( 1 ... M ) )  oF  +  ( ( ( ( ( 2nd `  k )  |`  (
1 ... M ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( ( j  +  1 ) ... M
) )  X.  {
0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  { 0 } ) )  /  p ]_ B ) )
396395rexbidv 3052 . . . . . . . . . . . 12  |-  ( t  =  <. ( ( 1st `  k )  |`  (
1 ... M ) ) ,  ( ( 2nd `  k )  |`  (
1 ... M ) )
>.  ->  ( E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  t )  oF  +  ( ( ( ( 2nd `  t
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  t
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  <->  E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( ( 1st `  k
)  |`  ( 1 ... M ) )  oF  +  ( ( ( ( ( 2nd `  k )  |`  (
1 ... M ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( ( j  +  1 ) ... M
) )  X.  {
0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  { 0 } ) )  /  p ]_ B ) )
397396ralbidv 2986 . . . . . . . . . . 11  |-  ( t  =  <. ( ( 1st `  k )  |`  (
1 ... M ) ) ,  ( ( 2nd `  k )  |`  (
1 ... M ) )
>.  ->  ( A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  t )  oF  +  ( ( ( ( 2nd `  t
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  t
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  <->  A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( ( 1st `  k
)  |`  ( 1 ... M ) )  oF  +  ( ( ( ( ( 2nd `  k )  |`  (
1 ... M ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( ( j  +  1 ) ... M
) )  X.  {
0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  { 0 } ) )  /  p ]_ B ) )
398385uneq1d 3766 . . . . . . . . . . . . 13  |-  ( t  =  <. ( ( 1st `  k )  |`  (
1 ... M ) ) ,  ( ( 2nd `  k )  |`  (
1 ... M ) )
>.  ->  ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } )  =  ( ( ( 1st `  k
)  |`  ( 1 ... M ) )  u. 
{ <. ( M  + 
1 ) ,  0
>. } ) )
399386uneq1d 3766 . . . . . . . . . . . . 13  |-  ( t  =  <. ( ( 1st `  k )  |`  (
1 ... M ) ) ,  ( ( 2nd `  k )  |`  (
1 ... M ) )
>.  ->  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } )  =  ( ( ( 2nd `  k
)  |`  ( 1 ... M ) )  u. 
{ <. ( M  + 
1 ) ,  ( M  +  1 )
>. } ) )
400398, 399opeq12d 4410 . . . . . . . . . . . 12  |-  ( t  =  <. ( ( 1st `  k )  |`  (
1 ... M ) ) ,  ( ( 2nd `  k )  |`  (
1 ... M ) )
>.  ->  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>.  =  <. ( ( ( 1st `  k
)  |`  ( 1 ... M ) )  u. 
{ <. ( M  + 
1 ) ,  0
>. } ) ,  ( ( ( 2nd `  k
)  |`  ( 1 ... M ) )  u. 
{ <. ( M  + 
1 ) ,  ( M  +  1 )
>. } ) >. )
401400eqeq2d 2632 . . . . . . . . . . 11  |-  ( t  =  <. ( ( 1st `  k )  |`  (
1 ... M ) ) ,  ( ( 2nd `  k )  |`  (
1 ... M ) )
>.  ->  ( k  = 
<. ( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >.  <->  k  =  <. ( ( ( 1st `  k )  |`  (
1 ... M ) )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( ( 2nd `  k )  |`  ( 1 ... M
) )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >. )
)
402397, 401anbi12d 747 . . . . . . . . . 10  |-  ( t  =  <. ( ( 1st `  k )  |`  (
1 ... M ) ) ,  ( ( 2nd `  k )  |`  (
1 ... M ) )
>.  ->  ( ( A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( 1st `  t
)  oF  +  ( ( ( ( 2nd `  t )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  t )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  k  =  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>. )  <->  ( A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( ( 1st `  k )  |`  ( 1 ... M
) )  oF  +  ( ( ( ( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( 1 ... j
) )  X.  {
1 } )  u.  ( ( ( ( 2nd `  k )  |`  ( 1 ... M
) ) " (
( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X. 
{ 0 } ) )  /  p ]_ B  /\  k  =  <. ( ( ( 1st `  k
)  |`  ( 1 ... M ) )  u. 
{ <. ( M  + 
1 ) ,  0
>. } ) ,  ( ( ( 2nd `  k
)  |`  ( 1 ... M ) )  u. 
{ <. ( M  + 
1 ) ,  ( M  +  1 )
>. } ) >. )
) )
403402rspcev 3309 . . . . . . . . 9  |-  ( (
<. ( ( 1st `  k
)  |`  ( 1 ... M ) ) ,  ( ( 2nd `  k
)  |`  ( 1 ... M ) ) >.  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } )  /\  ( A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( ( 1st `  k
)  |`  ( 1 ... M ) )  oF  +  ( ( ( ( ( 2nd `  k )  |`  (
1 ... M ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  k
)  |`  ( 1 ... M ) ) "
( ( j  +  1 ) ... M
) )  X.  {
0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  { 0 } ) )  /  p ]_ B  /\  k  =  <. ( ( ( 1st `  k )  |`  ( 1 ... M
) )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( ( 2nd `  k
)  |`  ( 1 ... M ) )  u. 
{ <. ( M  + 
1 ) ,  ( M  +  1 )
>. } ) >. )
)  ->  E. t  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ( A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  t )  oF  +  ( ( ( ( 2nd `  t
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  t
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  k  =  <. ( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >. )
)
404139, 355, 382, 403syl12anc 1324 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  /\  ( A. i  e.  (
0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( 1st `  k
)  oF  +  ( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  k
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) ) )  ->  E. t  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ( A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  t )  oF  +  ( ( ( ( 2nd `  t
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  t
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  k  =  <. ( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >. )
)
405404ex 450 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  ->  (
( A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  k )  oF  +  ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  ( ( 1st `  k
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) )  ->  E. t  e.  (
( ( 0..^ K )  ^m  ( 1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ( A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  t )  oF  +  ( ( ( ( 2nd `  t
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  t
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  k  =  <. ( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >. )
) )
406 elrabi 3359 . . . . . . . . . . 11  |-  ( t  e.  { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } )  |  A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B }  ->  t  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) )
407 elrabi 3359 . . . . . . . . . . 11  |-  ( n  e.  { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } )  |  A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B }  ->  n  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) )
408406, 407anim12i 590 . . . . . . . . . 10  |-  ( ( t  e.  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M
) )  X.  {
f  |  f : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
) } )  | 
A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B }  /\  n  e.  { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } )  |  A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  ->  (
t  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X. 
{ f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M
) } )  /\  n  e.  ( (
( 0..^ K )  ^m  ( 1 ... M ) )  X. 
{ f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M
) } ) ) )
409 eqtr2 2642 . . . . . . . . . . . 12  |-  ( ( k  =  <. (
( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >.  /\  k  =  <. ( ( 1st `  n )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  n
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>. )  ->  <. (
( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >.  =  <. ( ( 1st `  n
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  n )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >. )
41022, 24opth 4945 . . . . . . . . . . . . 13  |-  ( <.
( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >.  =  <. ( ( 1st `  n
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  n )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >.  <->  ( (
( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } )  =  ( ( 1st `  n )  u.  { <. ( M  +  1 ) ,  0 >. } )  /\  (
( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )  =  ( ( 2nd `  n )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) ) )
411 difeq1 3721 . . . . . . . . . . . . . . 15  |-  ( ( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } )  =  ( ( 1st `  n )  u.  { <. ( M  +  1 ) ,  0 >. } )  ->  (
( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) 
\  { <. ( M  +  1 ) ,  0 >. } )  =  ( ( ( 1st `  n )  u.  { <. ( M  +  1 ) ,  0 >. } ) 
\  { <. ( M  +  1 ) ,  0 >. } ) )
412 difun2 4048 . . . . . . . . . . . . . . 15  |-  ( ( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) 
\  { <. ( M  +  1 ) ,  0 >. } )  =  ( ( 1st `  t )  \  { <. ( M  +  1 ) ,  0 >. } )
413 difun2 4048 . . . . . . . . . . . . . . 15  |-  ( ( ( 1st `  n
)  u.  { <. ( M  +  1 ) ,  0 >. } ) 
\  { <. ( M  +  1 ) ,  0 >. } )  =  ( ( 1st `  n )  \  { <. ( M  +  1 ) ,  0 >. } )
414411, 412, 4133eqtr3g 2679 . . . . . . . . . . . . . 14  |-  ( ( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } )  =  ( ( 1st `  n )  u.  { <. ( M  +  1 ) ,  0 >. } )  ->  (
( 1st `  t
)  \  { <. ( M  +  1 ) ,  0 >. } )  =  ( ( 1st `  n )  \  { <. ( M  +  1 ) ,  0 >. } ) )
415 difeq1 3721 . . . . . . . . . . . . . . 15  |-  ( ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )  =  ( ( 2nd `  n )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } )  ->  (
( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } ) 
\  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )  =  ( ( ( 2nd `  n )  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } ) 
\  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } ) )
416 difun2 4048 . . . . . . . . . . . . . . 15  |-  ( ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } ) 
\  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )  =  ( ( 2nd `  t )  \  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } )
417 difun2 4048 . . . . . . . . . . . . . . 15  |-  ( ( ( 2nd `  n
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } ) 
\  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )  =  ( ( 2nd `  n )  \  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } )
418415, 416, 4173eqtr3g 2679 . . . . . . . . . . . . . 14  |-  ( ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )  =  ( ( 2nd `  n )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } )  ->  (
( 2nd `  t
)  \  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )  =  ( ( 2nd `  n )  \  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) )
419414, 418anim12i 590 . . . . . . . . . . . . 13  |-  ( ( ( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } )  =  ( ( 1st `  n )  u.  { <. ( M  +  1 ) ,  0 >. } )  /\  (
( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )  =  ( ( 2nd `  n )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) )  -> 
( ( ( 1st `  t )  \  { <. ( M  +  1 ) ,  0 >. } )  =  ( ( 1st `  n
)  \  { <. ( M  +  1 ) ,  0 >. } )  /\  ( ( 2nd `  t )  \  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } )  =  ( ( 2nd `  n
)  \  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } ) ) )
420410, 419sylbi 207 . . . . . . . . . . . 12  |-  ( <.
( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >.  =  <. ( ( 1st `  n
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  n )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >.  ->  (
( ( 1st `  t
)  \  { <. ( M  +  1 ) ,  0 >. } )  =  ( ( 1st `  n )  \  { <. ( M  +  1 ) ,  0 >. } )  /\  (
( 2nd `  t
)  \  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )  =  ( ( 2nd `  n )  \  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) ) )
421409, 420syl 17 . . . . . . . . . . 11  |-  ( ( k  =  <. (
( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >.  /\  k  =  <. ( ( 1st `  n )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  n
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>. )  ->  ( ( ( 1st `  t
)  \  { <. ( M  +  1 ) ,  0 >. } )  =  ( ( 1st `  n )  \  { <. ( M  +  1 ) ,  0 >. } )  /\  (
( 2nd `  t
)  \  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )  =  ( ( 2nd `  n )  \  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) ) )
422 elmapfn 7880 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1st `  t )  e.  ( ( 0..^ K )  ^m  (
1 ... M ) )  ->  ( 1st `  t
)  Fn  ( 1 ... M ) )
423 fnop 5994 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 1st `  t
)  Fn  ( 1 ... M )  /\  <.
( M  +  1 ) ,  0 >.  e.  ( 1st `  t
) )  ->  ( M  +  1 )  e.  ( 1 ... M ) )
424423ex 450 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1st `  t )  Fn  ( 1 ... M )  ->  ( <. ( M  +  1 ) ,  0 >.  e.  ( 1st `  t
)  ->  ( M  +  1 )  e.  ( 1 ... M
) ) )
4259, 422, 4243syl 18 . . . . . . . . . . . . . . . . . 18  |-  ( t  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M
) )  X.  {
f  |  f : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
) } )  -> 
( <. ( M  + 
1 ) ,  0
>.  e.  ( 1st `  t
)  ->  ( M  +  1 )  e.  ( 1 ... M
) ) )
426425, 122nsyli 155 . . . . . . . . . . . . . . . . 17  |-  ( t  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M
) )  X.  {
f  |  f : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
) } )  -> 
( ph  ->  -.  <. ( M  +  1 ) ,  0 >.  e.  ( 1st `  t ) ) )
427426impcom 446 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  t  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) )  ->  -.  <.
( M  +  1 ) ,  0 >.  e.  ( 1st `  t
) )
428 difsn 4328 . . . . . . . . . . . . . . . 16  |-  ( -. 
<. ( M  +  1 ) ,  0 >.  e.  ( 1st `  t
)  ->  ( ( 1st `  t )  \  { <. ( M  + 
1 ) ,  0
>. } )  =  ( 1st `  t ) )
429427, 428syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  t  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) )  ->  (
( 1st `  t
)  \  { <. ( M  +  1 ) ,  0 >. } )  =  ( 1st `  t
) )
430 xp1st 7198 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M
) )  X.  {
f  |  f : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
) } )  -> 
( 1st `  n
)  e.  ( ( 0..^ K )  ^m  ( 1 ... M
) ) )
431 elmapfn 7880 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1st `  n )  e.  ( ( 0..^ K )  ^m  (
1 ... M ) )  ->  ( 1st `  n
)  Fn  ( 1 ... M ) )
432 fnop 5994 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 1st `  n
)  Fn  ( 1 ... M )  /\  <.
( M  +  1 ) ,  0 >.  e.  ( 1st `  n
) )  ->  ( M  +  1 )  e.  ( 1 ... M ) )
433432ex 450 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1st `  n )  Fn  ( 1 ... M )  ->  ( <. ( M  +  1 ) ,  0 >.  e.  ( 1st `  n
)  ->  ( M  +  1 )  e.  ( 1 ... M
) ) )
434430, 431, 4333syl 18 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M
) )  X.  {
f  |  f : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
) } )  -> 
( <. ( M  + 
1 ) ,  0
>.  e.  ( 1st `  n
)  ->  ( M  +  1 )  e.  ( 1 ... M
) ) )
435434, 122nsyli 155 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M
) )  X.  {
f  |  f : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
) } )  -> 
( ph  ->  -.  <. ( M  +  1 ) ,  0 >.  e.  ( 1st `  n ) ) )
436435impcom 446 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) )  ->  -.  <.
( M  +  1 ) ,  0 >.  e.  ( 1st `  n
) )
437 difsn 4328 . . . . . . . . . . . . . . . 16  |-  ( -. 
<. ( M  +  1 ) ,  0 >.  e.  ( 1st `  n
)  ->  ( ( 1st `  n )  \  { <. ( M  + 
1 ) ,  0
>. } )  =  ( 1st `  n ) )
438436, 437syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) )  ->  (
( 1st `  n
)  \  { <. ( M  +  1 ) ,  0 >. } )  =  ( 1st `  n
) )
439429, 438eqeqan12d 2638 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  t  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) )  /\  ( ph  /\  n  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) )  -> 
( ( ( 1st `  t )  \  { <. ( M  +  1 ) ,  0 >. } )  =  ( ( 1st `  n
)  \  { <. ( M  +  1 ) ,  0 >. } )  <-> 
( 1st `  t
)  =  ( 1st `  n ) ) )
440439anandis 873 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( t  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } )  /\  n  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) )  -> 
( ( ( 1st `  t )  \  { <. ( M  +  1 ) ,  0 >. } )  =  ( ( 1st `  n
)  \  { <. ( M  +  1 ) ,  0 >. } )  <-> 
( 1st `  t
)  =  ( 1st `  n ) ) )
441 f1ofn 6138 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2nd `  t ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M
)  ->  ( 2nd `  t )  Fn  (
1 ... M ) )
442 fnop 5994 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 2nd `  t
)  Fn  ( 1 ... M )  /\  <.
( M  +  1 ) ,  ( M  +  1 ) >.  e.  ( 2nd `  t
) )  ->  ( M  +  1 )  e.  ( 1 ... M ) )
443442ex 450 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2nd `  t )  Fn  ( 1 ... M )  ->  ( <. ( M  +  1 ) ,  ( M  +  1 ) >.  e.  ( 2nd `  t
)  ->  ( M  +  1 )  e.  ( 1 ... M
) ) )
44417, 441, 4433syl 18 . . . . . . . . . . . . . . . . . 18  |-  ( t  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M
) )  X.  {
f  |  f : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
) } )  -> 
( <. ( M  + 
1 ) ,  ( M  +  1 )
>.  e.  ( 2nd `  t
)  ->  ( M  +  1 )  e.  ( 1 ... M
) ) )
445444, 122nsyli 155 . . . . . . . . . . . . . . . . 17  |-  ( t  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M
) )  X.  {
f  |  f : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
) } )  -> 
( ph  ->  -.  <. ( M  +  1 ) ,  ( M  + 
1 ) >.  e.  ( 2nd `  t ) ) )
446445impcom 446 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  t  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) )  ->  -.  <.
( M  +  1 ) ,  ( M  +  1 ) >.  e.  ( 2nd `  t
) )
447 difsn 4328 . . . . . . . . . . . . . . . 16  |-  ( -. 
<. ( M  +  1 ) ,  ( M  +  1 ) >.  e.  ( 2nd `  t
)  ->  ( ( 2nd `  t )  \  { <. ( M  + 
1 ) ,  ( M  +  1 )
>. } )  =  ( 2nd `  t ) )
448446, 447syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  t  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) )  ->  (
( 2nd `  t
)  \  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )  =  ( 2nd `  t
) )
449 xp2nd 7199 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M
) )  X.  {
f  |  f : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
) } )  -> 
( 2nd `  n
)  e.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } )
450 fvex 6201 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 2nd `  n )  e.  _V
451 f1oeq1 6127 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f  =  ( 2nd `  n
)  ->  ( f : ( 1 ... M ) -1-1-onto-> ( 1 ... M
)  <->  ( 2nd `  n
) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) )
452450, 451elab 3350 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2nd `  n )  e.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) }  <-> 
( 2nd `  n
) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) )
453449, 452sylib 208 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M
) )  X.  {
f  |  f : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
) } )  -> 
( 2nd `  n
) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) )
454 f1ofn 6138 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2nd `  n ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M
)  ->  ( 2nd `  n )  Fn  (
1 ... M ) )
455 fnop 5994 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 2nd `  n
)  Fn  ( 1 ... M )  /\  <.
( M  +  1 ) ,  ( M  +  1 ) >.  e.  ( 2nd `  n
) )  ->  ( M  +  1 )  e.  ( 1 ... M ) )
456455ex 450 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2nd `  n )  Fn  ( 1 ... M )  ->  ( <. ( M  +  1 ) ,  ( M  +  1 ) >.  e.  ( 2nd `  n
)  ->  ( M  +  1 )  e.  ( 1 ... M
) ) )
457453, 454, 4563syl 18 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M
) )  X.  {
f  |  f : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
) } )  -> 
( <. ( M  + 
1 ) ,  ( M  +  1 )
>.  e.  ( 2nd `  n
)  ->  ( M  +  1 )  e.  ( 1 ... M
) ) )
458457, 122nsyli 155 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M
) )  X.  {
f  |  f : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
) } )  -> 
( ph  ->  -.  <. ( M  +  1 ) ,  ( M  + 
1 ) >.  e.  ( 2nd `  n ) ) )
459458impcom 446 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) )  ->  -.  <.
( M  +  1 ) ,  ( M  +  1 ) >.  e.  ( 2nd `  n
) )
460 difsn 4328 . . . . . . . . . . . . . . . 16  |-  ( -. 
<. ( M  +  1 ) ,  ( M  +  1 ) >.  e.  ( 2nd `  n
)  ->  ( ( 2nd `  n )  \  { <. ( M  + 
1 ) ,  ( M  +  1 )
>. } )  =  ( 2nd `  n ) )
461459, 460syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) )  ->  (
( 2nd `  n
)  \  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )  =  ( 2nd `  n
) )
462448, 461eqeqan12d 2638 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  t  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) )  /\  ( ph  /\  n  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) )  -> 
( ( ( 2nd `  t )  \  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } )  =  ( ( 2nd `  n
)  \  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )  <-> 
( 2nd `  t
)  =  ( 2nd `  n ) ) )
463462anandis 873 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( t  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } )  /\  n  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) )  -> 
( ( ( 2nd `  t )  \  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } )  =  ( ( 2nd `  n
)  \  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )  <-> 
( 2nd `  t
)  =  ( 2nd `  n ) ) )
464440, 463anbi12d 747 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( t  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } )  /\  n  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) )  -> 
( ( ( ( 1st `  t ) 
\  { <. ( M  +  1 ) ,  0 >. } )  =  ( ( 1st `  n )  \  { <. ( M  +  1 ) ,  0 >. } )  /\  (
( 2nd `  t
)  \  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )  =  ( ( 2nd `  n )  \  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) )  <->  ( ( 1st `  t )  =  ( 1st `  n
)  /\  ( 2nd `  t )  =  ( 2nd `  n ) ) ) )
465 xpopth 7207 . . . . . . . . . . . . 13  |-  ( ( t  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X. 
{ f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M
) } )  /\  n  e.  ( (
( 0..^ K )  ^m  ( 1 ... M ) )  X. 
{ f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M
) } ) )  ->  ( ( ( 1st `  t )  =  ( 1st `  n
)  /\  ( 2nd `  t )  =  ( 2nd `  n ) )  <->  t  =  n ) )
466465adantl 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( t  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } )  /\  n  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) )  -> 
( ( ( 1st `  t )  =  ( 1st `  n )  /\  ( 2nd `  t
)  =  ( 2nd `  n ) )  <->  t  =  n ) )
467464, 466bitrd 268 . . . . . . . . . . 11  |-  ( (
ph  /\  ( t  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } )  /\  n  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) )  -> 
( ( ( ( 1st `  t ) 
\  { <. ( M  +  1 ) ,  0 >. } )  =  ( ( 1st `  n )  \  { <. ( M  +  1 ) ,  0 >. } )  /\  (
( 2nd `  t
)  \  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )  =  ( ( 2nd `  n )  \  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) )  <->  t  =  n ) )
468421, 467syl5ib 234 . . . . . . . . . 10  |-  ( (
ph  /\  ( t  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } )  /\  n  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) )  -> 
( ( k  = 
<. ( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >.  /\  k  =  <. ( ( 1st `  n )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  n
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>. )  ->  t  =  n ) )
469408, 468sylan2 491 . . . . . . . . 9  |-  ( (
ph  /\  ( t  e.  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } )  |  A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B }  /\  n  e.  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X. 
{ f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M
) } )  | 
A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } ) )  ->  ( (
k  =  <. (
( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >.  /\  k  =  <. ( ( 1st `  n )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  n
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>. )  ->  t  =  n ) )
470469ralrimivva 2971 . . . . . . . 8  |-  ( ph  ->  A. t  e.  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X. 
{ f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M
) } )  | 
A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } A. n  e.  { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } )  |  A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B }  ( ( k  =  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>.  /\  k  =  <. ( ( 1st `  n
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  n )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >. )  ->  t  =  n ) )
471470adantr 481 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  ->  A. t  e.  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } )  |  A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } A. n  e.  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X. 
{ f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M
) } )  | 
A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B }  (
( k  =  <. ( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >.  /\  k  =  <. ( ( 1st `  n )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  n
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>. )  ->  t  =  n ) )
472405, 471jctird 567 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  ->  (
( A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  k )  oF  +  ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  ( ( 1st `  k
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) )  -> 
( E. t  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ( A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  t )  oF  +  ( ( ( ( 2nd `  t
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  t
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  k  =  <. ( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >. )  /\  A. t  e.  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X. 
{ f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M
) } )  | 
A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } A. n  e.  { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } )  |  A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B }  ( ( k  =  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>.  /\  k  =  <. ( ( 1st `  n
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  n )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >. )  ->  t  =  n ) ) ) )
473 fveq2 6191 . . . . . . . . . . 11  |-  ( t  =  n  ->  ( 1st `  t )  =  ( 1st `  n
) )
474473uneq1d 3766 . . . . . . . . . 10  |-  ( t  =  n  ->  (
( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } )  =  ( ( 1st `  n )  u.  { <. ( M  +  1 ) ,  0 >. } ) )
475 fveq2 6191 . . . . . . . . . . 11  |-  ( t  =  n  ->  ( 2nd `  t )  =  ( 2nd `  n
) )
476475uneq1d 3766 . . . . . . . . . 10  |-  ( t  =  n  ->  (
( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )  =  ( ( 2nd `  n )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) )
477474, 476opeq12d 4410 . . . . . . . . 9  |-  ( t  =  n  ->  <. (
( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >.  =  <. ( ( 1st `  n
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  n )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >. )
478477eqeq2d 2632 . . . . . . . 8  |-  ( t  =  n  ->  (
k  =  <. (
( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >.  <->  k  =  <. ( ( 1st `  n
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  n )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >. )
)
479478reu4 3400 . . . . . . 7  |-  ( E! t  e.  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M
) )  X.  {
f  |  f : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
) } )  | 
A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } k  =  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>. 
<->  ( E. t  e. 
{ s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } )  |  A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } k  =  <. ( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >.  /\  A. t  e.  { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } )  |  A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } A. n  e.  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X. 
{ f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M
) } )  | 
A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B }  (
( k  =  <. ( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >.  /\  k  =  <. ( ( 1st `  n )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  n
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>. )  ->  t  =  n ) ) )
48058rexrab 3370 . . . . . . . 8  |-  ( E. t  e.  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M
) )  X.  {
f  |  f : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
) } )  | 
A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } k  =  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>. 
<->  E. t  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ( A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  t )  oF  +  ( ( ( ( 2nd `  t
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  t
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  k  =  <. ( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >. )
)
481480anbi1i 731 . . . . . . 7  |-  ( ( E. t  e.  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X. 
{ f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M
) } )  | 
A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } k  =  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>.  /\  A. t  e. 
{ s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } )  |  A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } A. n  e.  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X. 
{ f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M
) } )  | 
A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B }  (
( k  =  <. ( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >.  /\  k  =  <. ( ( 1st `  n )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  n
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>. )  ->  t  =  n ) )  <->  ( E. t  e.  ( (
( 0..^ K )  ^m  ( 1 ... M ) )  X. 
{ f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M
) } ) ( A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ (
( ( 1st `  t
)  oF  +  ( ( ( ( 2nd `  t )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  t )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  k  =  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>. )  /\  A. t  e.  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } )  |  A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } A. n  e.  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X. 
{ f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M
) } )  | 
A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B }  (
( k  =  <. ( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >.  /\  k  =  <. ( ( 1st `  n )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  n
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>. )  ->  t  =  n ) ) )
482479, 481bitri 264 . . . . . 6  |-  ( E! t  e.  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M
) )  X.  {
f  |  f : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
) } )  | 
A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } k  =  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>. 
<->  ( E. t  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ( A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  t )  oF  +  ( ( ( ( 2nd `  t
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  t
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  k  =  <. ( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >. )  /\  A. t  e.  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X. 
{ f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M
) } )  | 
A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } A. n  e.  { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } )  |  A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B }  ( ( k  =  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>.  /\  k  =  <. ( ( 1st `  n
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  n )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >. )  ->  t  =  n ) ) )
483472, 482syl6ibr 242 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) )  ->  (
( A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  k )  oF  +  ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  ( ( 1st `  k
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) )  ->  E! t  e.  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M
) )  X.  {
f  |  f : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
) } )  | 
A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } k  =  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>. ) )
484483ralrimiva 2966 . . . 4  |-  ( ph  ->  A. k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) ( ( A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( 1st `  k
)  oF  +  ( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  k
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) )  ->  E! t  e.  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M
) )  X.  {
f  |  f : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
) } )  | 
A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } k  =  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>. ) )
485 fveq2 6191 . . . . . . . . . . . 12  |-  ( s  =  k  ->  ( 1st `  s )  =  ( 1st `  k
) )
486 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( s  =  k  ->  ( 2nd `  s )  =  ( 2nd `  k
) )
487486imaeq1d 5465 . . . . . . . . . . . . . 14  |-  ( s  =  k  ->  (
( 2nd `  s
) " ( 1 ... j ) )  =  ( ( 2nd `  k ) " (
1 ... j ) ) )
488487xpeq1d 5138 . . . . . . . . . . . . 13  |-  ( s  =  k  ->  (
( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  =  ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } ) )
489486imaeq1d 5465 . . . . . . . . . . . . . 14  |-  ( s  =  k  ->  (
( 2nd `  s
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  =  ( ( 2nd `  k ) " (
( j  +  1 ) ... ( M  +  1 ) ) ) )
490489xpeq1d 5138 . . . . . . . . . . . . 13  |-  ( s  =  k  ->  (
( ( 2nd `  s
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } )  =  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) )
491488, 490uneq12d 3768 . . . . . . . . . . . 12  |-  ( s  =  k  ->  (
( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) )  =  ( ( ( ( 2nd `  k ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) )
492485, 491oveq12d 6668 . . . . . . . . . . 11  |-  ( s  =  k  ->  (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  k
)  oF  +  ( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) ) )
493492uneq1d 3766 . . . . . . . . . 10  |-  ( s  =  k  ->  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  =  ( ( ( 1st `  k )  oF  +  ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) )
494493csbeq1d 3540 . . . . . . . . 9  |-  ( s  =  k  ->  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  =  [_ ( ( ( 1st `  k )  oF  +  ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B
)
495494eqeq2d 2632 . . . . . . . 8  |-  ( s  =  k  ->  (
i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <->  i  =  [_ ( ( ( 1st `  k )  oF  +  ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B
) )
496495rexbidv 3052 . . . . . . 7  |-  ( s  =  k  ->  ( E. j  e.  (
0 ... M ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <->  E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  k )  oF  +  ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B
) )
497496ralbidv 2986 . . . . . 6  |-  ( s  =  k  ->  ( A. i  e.  (
0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <->  A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  k )  oF  +  ( ( ( ( 2nd `  k
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  k
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B
) )
498485fveq1d 6193 . . . . . . 7  |-  ( s  =  k  ->  (
( 1st `  s
) `  ( M  +  1 ) )  =  ( ( 1st `  k ) `  ( M  +  1 ) ) )
499498eqeq1d 2624 . . . . . 6  |-  ( s  =  k  ->  (
( ( 1st `  s
) `  ( M  +  1 ) )  =  0  <->  ( ( 1st `  k ) `  ( M  +  1
) )  =  0 ) )
500486fveq1d 6193 . . . . . . 7  |-  ( s  =  k  ->  (
( 2nd `  s
) `  ( M  +  1 ) )  =  ( ( 2nd `  k ) `  ( M  +  1 ) ) )
501500eqeq1d 2624 . . . . . 6  |-  ( s  =  k  ->  (
( ( 2nd `  s
) `  ( M  +  1 ) )  =  ( M  + 
1 )  <->  ( ( 2nd `  k ) `  ( M  +  1
) )  =  ( M  +  1 ) ) )
502497, 499, 5013anbi123d 1399 . . . . 5  |-  ( s  =  k  ->  (
( A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  ( ( 1st `  s
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( M  +  1 ) )  =  ( M  + 
1 ) )  <->  ( A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( 1st `  k
)  oF  +  ( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  k
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) ) ) )
503502ralrab 3368 . . . 4  |-  ( A. k  e.  { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } )  |  ( A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( M  +  1 ) )  =  ( M  + 
1 ) ) } E! t  e.  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X. 
{ f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M
) } )  | 
A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } k  =  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>. 
<-> 
A. k  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } ) ( ( A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( 1st `  k
)  oF  +  ( ( ( ( 2nd `  k )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  k )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  k
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  k
) `  ( M  +  1 ) )  =  ( M  + 
1 ) )  ->  E! t  e.  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M
) )  X.  {
f  |  f : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
) } )  | 
A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } k  =  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>. ) )
504484, 503sylibr 224 . . 3  |-  ( ph  ->  A. k  e.  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( M  +  1 ) ) -1-1-onto-> ( 1 ... ( M  +  1 ) ) } )  |  ( A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( M  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( M  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  ( ( 1st `  s
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( M  +  1 ) )  =  ( M  + 
1 ) ) } E! t  e.  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X. 
{ f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M
) } )  | 
A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } k  =  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>. )
505 eqid 2622 . . . 4  |-  ( t  e.  { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } )  |  A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B }  |->  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>. )  =  (
t  e.  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M
) )  X.  {
f  |  f : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
) } )  | 
A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B }  |->  <.
( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >. )
506505f1ompt 6382 . . 3  |-  ( ( t  e.  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M
) )  X.  {
f  |  f : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
) } )  | 
A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B }  |->  <.
( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >. ) : { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } )  |  A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B }
-1-1-onto-> { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } )  |  ( A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( M  +  1 ) )  =  ( M  + 
1 ) ) }  <-> 
( A. t  e. 
{ s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } )  |  A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>.  e.  { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } )  |  ( A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( M  +  1 ) )  =  ( M  + 
1 ) ) }  /\  A. k  e. 
{ s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } )  |  ( A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( M  +  1 ) )  =  ( M  + 
1 ) ) } E! t  e.  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X. 
{ f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M
) } )  | 
A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } k  =  <. ( ( 1st `  t )  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t
)  u.  { <. ( M  +  1 ) ,  ( M  + 
1 ) >. } )
>. ) )
50760, 504, 506sylanbrc 698 . 2  |-  ( ph  ->  ( t  e.  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X. 
{ f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M
) } )  | 
A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B }  |->  <.
( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >. ) : { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } )  |  A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B }
-1-1-onto-> { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } )  |  ( A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( M  +  1 ) )  =  ( M  + 
1 ) ) } )
508 ovex 6678 . . . . 5  |-  ( ( 0..^ K )  ^m  ( 1 ... M
) )  e.  _V
509 ovex 6678 . . . . . 6  |-  ( ( 1 ... M )  ^m  ( 1 ... M ) )  e. 
_V
510 f1of 6137 . . . . . . . 8  |-  ( f : ( 1 ... M ) -1-1-onto-> ( 1 ... M
)  ->  f :
( 1 ... M
) --> ( 1 ... M ) )
511510ss2abi 3674 . . . . . . 7  |-  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) }  C_  { f  |  f : ( 1 ... M ) --> ( 1 ... M
) }
51268, 68mapval 7869 . . . . . . 7  |-  ( ( 1 ... M )  ^m  ( 1 ... M ) )  =  { f  |  f : ( 1 ... M ) --> ( 1 ... M ) }
513511, 512sseqtr4i 3638 . . . . . 6  |-  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) }  C_  ( (
1 ... M )  ^m  ( 1 ... M
) )
514509, 513ssexi 4803 . . . . 5  |-  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) }  e.  _V
515508, 514xpex 6962 . . . 4  |-  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X. 
{ f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M
) } )  e. 
_V
516515rabex 4813 . . 3  |-  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M
) )  X.  {
f  |  f : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
) } )  | 
A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B }  e.  _V
517516f1oen 7976 . 2  |-  ( ( t  e.  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M
) )  X.  {
f  |  f : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
) } )  | 
A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... M ) )  X. 
{ 0 } ) ) )  u.  (
( ( M  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B }  |->  <.
( ( 1st `  t
)  u.  { <. ( M  +  1 ) ,  0 >. } ) ,  ( ( 2nd `  t )  u.  { <. ( M  +  1 ) ,  ( M  +  1 ) >. } ) >. ) : { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } )  |  A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B }
-1-1-onto-> { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } )  |  ( A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( M  +  1 ) )  =  ( M  + 
1 ) ) }  ->  { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } )  |  A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B }  ~~  { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } )  |  ( A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( M  +  1 ) )  =  ( M  + 
1 ) ) } )
518507, 517syl 17 1  |-  ( ph  ->  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... M ) )  X.  { f  |  f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } )  |  A. i  e.  ( 0 ... M
) E. j  e.  ( 0 ... M
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... M ) )  X.  { 0 } ) ) )  u.  ( ( ( M  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B }  ~~  { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( M  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( M  + 
1 ) ) -1-1-onto-> ( 1 ... ( M  + 
1 ) ) } )  |  ( A. i  e.  ( 0 ... M ) E. j  e.  ( 0 ... M ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( M  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( M  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( M  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( M  +  1 ) )  =  ( M  + 
1 ) ) } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   E!wreu 2914   {crab 2916   _Vcvv 3200   [_csb 3533    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113    |` cres 5116   "cima 5117   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    oFcof 6895   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857    ~~ cen 7952   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466
This theorem is referenced by:  poimirlem28  33437
  Copyright terms: Public domain W3C validator