MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nv0lid Structured version   Visualization version   Unicode version

Theorem nv0lid 27491
Description: The zero vector is a left identity element. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nv0id.1  |-  X  =  ( BaseSet `  U )
nv0id.2  |-  G  =  ( +v `  U
)
nv0id.6  |-  Z  =  ( 0vec `  U
)
Assertion
Ref Expression
nv0lid  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( Z G A )  =  A )

Proof of Theorem nv0lid
StepHypRef Expression
1 nv0id.2 . . . . 5  |-  G  =  ( +v `  U
)
2 nv0id.6 . . . . 5  |-  Z  =  ( 0vec `  U
)
31, 20vfval 27461 . . . 4  |-  ( U  e.  NrmCVec  ->  Z  =  (GId
`  G ) )
43oveq1d 6665 . . 3  |-  ( U  e.  NrmCVec  ->  ( Z G A )  =  ( (GId `  G ) G A ) )
54adantr 481 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( Z G A )  =  ( (GId `  G
) G A ) )
61nvgrp 27472 . . 3  |-  ( U  e.  NrmCVec  ->  G  e.  GrpOp )
7 nv0id.1 . . . . 5  |-  X  =  ( BaseSet `  U )
87, 1bafval 27459 . . . 4  |-  X  =  ran  G
9 eqid 2622 . . . 4  |-  (GId `  G )  =  (GId
`  G )
108, 9grpolid 27370 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
(GId `  G ) G A )  =  A )
116, 10sylan 488 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
(GId `  G ) G A )  =  A )
125, 11eqtrd 2656 1  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( Z G A )  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   GrpOpcgr 27343  GIdcgi 27344   NrmCVeccnv 27439   +vcpv 27440   BaseSetcba 27441   0veccn0v 27443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-1st 7168  df-2nd 7169  df-grpo 27347  df-gid 27348  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-nmcv 27455
This theorem is referenced by:  nvpncan2  27508  nvmeq0  27513  imsmetlem  27545  ipdirilem  27684
  Copyright terms: Public domain W3C validator