| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imsmetlem | Structured version Visualization version Unicode version | ||
| Description: Lemma for imsmet 27546. (Contributed by NM, 29-Nov-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| imsmetlem.1 |
|
| imsmetlem.2 |
|
| imsmetlem.7 |
|
| imsmetlem.4 |
|
| imsmetlem.5 |
|
| imsmetlem.6 |
|
| imsmetlem.8 |
|
| imsmetlem.9 |
|
| Ref | Expression |
|---|---|
| imsmetlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imsmetlem.1 |
. . 3
| |
| 2 | fvex 6201 |
. . 3
| |
| 3 | 1, 2 | eqeltri 2697 |
. 2
|
| 4 | imsmetlem.9 |
. . 3
| |
| 5 | imsmetlem.8 |
. . . 4
| |
| 6 | 1, 5 | imsdf 27544 |
. . 3
|
| 7 | 4, 6 | ax-mp 5 |
. 2
|
| 8 | imsmetlem.2 |
. . . . . 6
| |
| 9 | imsmetlem.4 |
. . . . . 6
| |
| 10 | imsmetlem.6 |
. . . . . 6
| |
| 11 | 1, 8, 9, 10, 5 | imsdval2 27542 |
. . . . 5
|
| 12 | 4, 11 | mp3an1 1411 |
. . . 4
|
| 13 | 12 | eqeq1d 2624 |
. . 3
|
| 14 | neg1cn 11124 |
. . . . . 6
| |
| 15 | 1, 9 | nvscl 27481 |
. . . . . 6
|
| 16 | 4, 14, 15 | mp3an12 1414 |
. . . . 5
|
| 17 | 1, 8 | nvgcl 27475 |
. . . . . 6
|
| 18 | 4, 17 | mp3an1 1411 |
. . . . 5
|
| 19 | 16, 18 | sylan2 491 |
. . . 4
|
| 20 | imsmetlem.5 |
. . . . 5
| |
| 21 | 1, 20, 10 | nvz 27524 |
. . . 4
|
| 22 | 4, 19, 21 | sylancr 695 |
. . 3
|
| 23 | 1, 20 | nvzcl 27489 |
. . . . . . 7
|
| 24 | 4, 23 | ax-mp 5 |
. . . . . 6
|
| 25 | 1, 8 | nvrcan 27479 |
. . . . . . 7
|
| 26 | 4, 25 | mpan 706 |
. . . . . 6
|
| 27 | 24, 26 | mp3an2 1412 |
. . . . 5
|
| 28 | 19, 27 | sylancom 701 |
. . . 4
|
| 29 | simpl 473 |
. . . . . . 7
| |
| 30 | 16 | adantl 482 |
. . . . . . 7
|
| 31 | simpr 477 |
. . . . . . 7
| |
| 32 | 1, 8 | nvass 27477 |
. . . . . . . 8
|
| 33 | 4, 32 | mpan 706 |
. . . . . . 7
|
| 34 | 29, 30, 31, 33 | syl3anc 1326 |
. . . . . 6
|
| 35 | 1, 8, 9, 20 | nvlinv 27507 |
. . . . . . . . 9
|
| 36 | 4, 35 | mpan 706 |
. . . . . . . 8
|
| 37 | 36 | adantl 482 |
. . . . . . 7
|
| 38 | 37 | oveq2d 6666 |
. . . . . 6
|
| 39 | 1, 8, 20 | nv0rid 27490 |
. . . . . . . 8
|
| 40 | 4, 39 | mpan 706 |
. . . . . . 7
|
| 41 | 40 | adantr 481 |
. . . . . 6
|
| 42 | 34, 38, 41 | 3eqtrd 2660 |
. . . . 5
|
| 43 | 1, 8, 20 | nv0lid 27491 |
. . . . . . 7
|
| 44 | 4, 43 | mpan 706 |
. . . . . 6
|
| 45 | 44 | adantl 482 |
. . . . 5
|
| 46 | 42, 45 | eqeq12d 2637 |
. . . 4
|
| 47 | 28, 46 | bitr3d 270 |
. . 3
|
| 48 | 13, 22, 47 | 3bitrd 294 |
. 2
|
| 49 | simpr 477 |
. . . . . . 7
| |
| 50 | 1, 9 | nvscl 27481 |
. . . . . . . . 9
|
| 51 | 4, 14, 50 | mp3an12 1414 |
. . . . . . . 8
|
| 52 | 51 | adantr 481 |
. . . . . . 7
|
| 53 | 1, 8 | nvgcl 27475 |
. . . . . . . 8
|
| 54 | 4, 53 | mp3an1 1411 |
. . . . . . 7
|
| 55 | 49, 52, 54 | syl2anc 693 |
. . . . . 6
|
| 56 | 55 | 3adant3 1081 |
. . . . 5
|
| 57 | 1, 8 | nvgcl 27475 |
. . . . . . . 8
|
| 58 | 4, 57 | mp3an1 1411 |
. . . . . . 7
|
| 59 | 16, 58 | sylan2 491 |
. . . . . 6
|
| 60 | 59 | 3adant2 1080 |
. . . . 5
|
| 61 | 1, 8, 10 | nvtri 27525 |
. . . . . 6
|
| 62 | 4, 61 | mp3an1 1411 |
. . . . 5
|
| 63 | 56, 60, 62 | syl2anc 693 |
. . . 4
|
| 64 | 12 | 3adant1 1079 |
. . . . 5
|
| 65 | simp1 1061 |
. . . . . . . 8
| |
| 66 | 16 | 3ad2ant3 1084 |
. . . . . . . 8
|
| 67 | 1, 8 | nvass 27477 |
. . . . . . . . 9
|
| 68 | 4, 67 | mpan 706 |
. . . . . . . 8
|
| 69 | 56, 65, 66, 68 | syl3anc 1326 |
. . . . . . 7
|
| 70 | simpl 473 |
. . . . . . . . . . 11
| |
| 71 | 1, 8 | nvass 27477 |
. . . . . . . . . . . 12
|
| 72 | 4, 71 | mpan 706 |
. . . . . . . . . . 11
|
| 73 | 49, 52, 70, 72 | syl3anc 1326 |
. . . . . . . . . 10
|
| 74 | 1, 8, 9, 20 | nvlinv 27507 |
. . . . . . . . . . . . 13
|
| 75 | 4, 74 | mpan 706 |
. . . . . . . . . . . 12
|
| 76 | 75 | adantr 481 |
. . . . . . . . . . 11
|
| 77 | 76 | oveq2d 6666 |
. . . . . . . . . 10
|
| 78 | 40 | adantl 482 |
. . . . . . . . . 10
|
| 79 | 73, 77, 78 | 3eqtrd 2660 |
. . . . . . . . 9
|
| 80 | 79 | 3adant3 1081 |
. . . . . . . 8
|
| 81 | 80 | oveq1d 6665 |
. . . . . . 7
|
| 82 | 69, 81 | eqtr3d 2658 |
. . . . . 6
|
| 83 | 82 | fveq2d 6195 |
. . . . 5
|
| 84 | 64, 83 | eqtr4d 2659 |
. . . 4
|
| 85 | 1, 8, 9, 10, 5 | imsdval2 27542 |
. . . . . . . 8
|
| 86 | 4, 85 | mp3an1 1411 |
. . . . . . 7
|
| 87 | 1, 8, 9, 10 | nvdif 27521 |
. . . . . . . 8
|
| 88 | 4, 87 | mp3an1 1411 |
. . . . . . 7
|
| 89 | 86, 88 | eqtrd 2656 |
. . . . . 6
|
| 90 | 89 | 3adant3 1081 |
. . . . 5
|
| 91 | 1, 8, 9, 10, 5 | imsdval2 27542 |
. . . . . . 7
|
| 92 | 4, 91 | mp3an1 1411 |
. . . . . 6
|
| 93 | 92 | 3adant2 1080 |
. . . . 5
|
| 94 | 90, 93 | oveq12d 6668 |
. . . 4
|
| 95 | 63, 84, 94 | 3brtr4d 4685 |
. . 3
|
| 96 | 95 | 3coml 1272 |
. 2
|
| 97 | 3, 7, 48, 96 | ismeti 22130 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-met 19740 df-grpo 27347 df-gid 27348 df-ginv 27349 df-gdiv 27350 df-ablo 27399 df-vc 27414 df-nv 27447 df-va 27450 df-ba 27451 df-sm 27452 df-0v 27453 df-vs 27454 df-nmcv 27455 df-ims 27456 |
| This theorem is referenced by: imsmet 27546 |
| Copyright terms: Public domain | W3C validator |