MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1co Structured version   Visualization version   Unicode version

Theorem o1co 14317
Description: Sufficient condition for transforming the index set of an eventually bounded function. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
o1co.1  |-  ( ph  ->  F : A --> CC )
o1co.2  |-  ( ph  ->  F  e.  O(1) )
o1co.3  |-  ( ph  ->  G : B --> A )
o1co.4  |-  ( ph  ->  B  C_  RR )
o1co.5  |-  ( (
ph  /\  m  e.  RR )  ->  E. x  e.  RR  A. y  e.  B  ( x  <_ 
y  ->  m  <_  ( G `  y ) ) )
Assertion
Ref Expression
o1co  |-  ( ph  ->  ( F  o.  G
)  e.  O(1) )
Distinct variable groups:    x, m, y, A    m, F, x, y    m, G, x, y    ph, m, x, y    B, m, x, y

Proof of Theorem o1co
Dummy variables  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1co.2 . . . 4  |-  ( ph  ->  F  e.  O(1) )
2 o1co.1 . . . . 5  |-  ( ph  ->  F : A --> CC )
3 fdm 6051 . . . . . . 7  |-  ( F : A --> CC  ->  dom 
F  =  A )
42, 3syl 17 . . . . . 6  |-  ( ph  ->  dom  F  =  A )
5 o1dm 14261 . . . . . . 7  |-  ( F  e.  O(1)  ->  dom  F  C_  RR )
61, 5syl 17 . . . . . 6  |-  ( ph  ->  dom  F  C_  RR )
74, 6eqsstr3d 3640 . . . . 5  |-  ( ph  ->  A  C_  RR )
8 elo12 14258 . . . . 5  |-  ( ( F : A --> CC  /\  A  C_  RR )  -> 
( F  e.  O(1)  <->  E. m  e.  RR  E. n  e.  RR  A. z  e.  A  ( m  <_ 
z  ->  ( abs `  ( F `  z
) )  <_  n
) ) )
92, 7, 8syl2anc 693 . . . 4  |-  ( ph  ->  ( F  e.  O(1)  <->  E. m  e.  RR  E. n  e.  RR  A. z  e.  A  ( m  <_ 
z  ->  ( abs `  ( F `  z
) )  <_  n
) ) )
101, 9mpbid 222 . . 3  |-  ( ph  ->  E. m  e.  RR  E. n  e.  RR  A. z  e.  A  (
m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )
11 o1co.5 . . . . 5  |-  ( (
ph  /\  m  e.  RR )  ->  E. x  e.  RR  A. y  e.  B  ( x  <_ 
y  ->  m  <_  ( G `  y ) ) )
12 reeanv 3107 . . . . . 6  |-  ( E. x  e.  RR  E. n  e.  RR  ( A. y  e.  B  ( x  <_  y  ->  m  <_  ( G `  y ) )  /\  A. z  e.  A  ( m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  <-> 
( E. x  e.  RR  A. y  e.  B  ( x  <_ 
y  ->  m  <_  ( G `  y ) )  /\  E. n  e.  RR  A. z  e.  A  ( m  <_ 
z  ->  ( abs `  ( F `  z
) )  <_  n
) ) )
13 o1co.3 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  G : B --> A )
1413ad3antrrr 766 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  ->  G : B --> A )
1514ffvelrnda 6359 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  /\  y  e.  B
)  ->  ( G `  y )  e.  A
)
16 breq2 4657 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( G `  y )  ->  (
m  <_  z  <->  m  <_  ( G `  y ) ) )
17 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  ( G `  y )  ->  ( F `  z )  =  ( F `  ( G `  y ) ) )
1817fveq2d 6195 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( G `  y )  ->  ( abs `  ( F `  z ) )  =  ( abs `  ( F `  ( G `  y ) ) ) )
1918breq1d 4663 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( G `  y )  ->  (
( abs `  ( F `  z )
)  <_  n  <->  ( abs `  ( F `  ( G `  y )
) )  <_  n
) )
2016, 19imbi12d 334 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( G `  y )  ->  (
( m  <_  z  ->  ( abs `  ( F `  z )
)  <_  n )  <->  ( m  <_  ( G `  y )  ->  ( abs `  ( F `  ( G `  y ) ) )  <_  n
) ) )
2120rspcva 3307 . . . . . . . . . . . . . . 15  |-  ( ( ( G `  y
)  e.  A  /\  A. z  e.  A  ( m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  ->  ( m  <_ 
( G `  y
)  ->  ( abs `  ( F `  ( G `  y )
) )  <_  n
) )
2215, 21sylan 488 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  /\  y  e.  B )  /\  A. z  e.  A  (
m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  ->  ( m  <_ 
( G `  y
)  ->  ( abs `  ( F `  ( G `  y )
) )  <_  n
) )
2322an32s 846 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  /\  A. z  e.  A  (
m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  /\  y  e.  B
)  ->  ( m  <_  ( G `  y
)  ->  ( abs `  ( F `  ( G `  y )
) )  <_  n
) )
2414adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  /\  A. z  e.  A  ( m  <_ 
z  ->  ( abs `  ( F `  z
) )  <_  n
) )  ->  G : B --> A )
25 fvco3 6275 . . . . . . . . . . . . . . . 16  |-  ( ( G : B --> A  /\  y  e.  B )  ->  ( ( F  o.  G ) `  y
)  =  ( F `
 ( G `  y ) ) )
2624, 25sylan 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  /\  A. z  e.  A  (
m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  /\  y  e.  B
)  ->  ( ( F  o.  G ) `  y )  =  ( F `  ( G `
 y ) ) )
2726fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  /\  A. z  e.  A  (
m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  /\  y  e.  B
)  ->  ( abs `  ( ( F  o.  G ) `  y
) )  =  ( abs `  ( F `
 ( G `  y ) ) ) )
2827breq1d 4663 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  /\  A. z  e.  A  (
m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  /\  y  e.  B
)  ->  ( ( abs `  ( ( F  o.  G ) `  y ) )  <_  n 
<->  ( abs `  ( F `  ( G `  y ) ) )  <_  n ) )
2923, 28sylibrd 249 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  /\  A. z  e.  A  (
m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  /\  y  e.  B
)  ->  ( m  <_  ( G `  y
)  ->  ( abs `  ( ( F  o.  G ) `  y
) )  <_  n
) )
3029imim2d 57 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  /\  A. z  e.  A  (
m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  /\  y  e.  B
)  ->  ( (
x  <_  y  ->  m  <_  ( G `  y ) )  -> 
( x  <_  y  ->  ( abs `  (
( F  o.  G
) `  y )
)  <_  n )
) )
3130ralimdva 2962 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  /\  A. z  e.  A  ( m  <_ 
z  ->  ( abs `  ( F `  z
) )  <_  n
) )  ->  ( A. y  e.  B  ( x  <_  y  ->  m  <_  ( G `  y ) )  ->  A. y  e.  B  ( x  <_  y  -> 
( abs `  (
( F  o.  G
) `  y )
)  <_  n )
) )
3231expimpd 629 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  ->  ( ( A. z  e.  A  (
m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n )  /\  A. y  e.  B  ( x  <_  y  ->  m  <_  ( G `  y ) ) )  ->  A. y  e.  B  ( x  <_  y  -> 
( abs `  (
( F  o.  G
) `  y )
)  <_  n )
) )
3332ancomsd 470 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  RR )  /\  x  e.  RR )  /\  n  e.  RR )  ->  ( ( A. y  e.  B  (
x  <_  y  ->  m  <_  ( G `  y ) )  /\  A. z  e.  A  ( m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  ->  A. y  e.  B  ( x  <_  y  -> 
( abs `  (
( F  o.  G
) `  y )
)  <_  n )
) )
3433reximdva 3017 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  RR )  /\  x  e.  RR )  ->  ( E. n  e.  RR  ( A. y  e.  B  ( x  <_  y  ->  m  <_  ( G `  y ) )  /\  A. z  e.  A  ( m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  ->  E. n  e.  RR  A. y  e.  B  ( x  <_  y  ->  ( abs `  ( ( F  o.  G ) `
 y ) )  <_  n ) ) )
3534reximdva 3017 . . . . . 6  |-  ( (
ph  /\  m  e.  RR )  ->  ( E. x  e.  RR  E. n  e.  RR  ( A. y  e.  B  ( x  <_  y  ->  m  <_  ( G `  y ) )  /\  A. z  e.  A  ( m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  ->  E. x  e.  RR  E. n  e.  RR  A. y  e.  B  (
x  <_  y  ->  ( abs `  ( ( F  o.  G ) `
 y ) )  <_  n ) ) )
3612, 35syl5bir 233 . . . . 5  |-  ( (
ph  /\  m  e.  RR )  ->  ( ( E. x  e.  RR  A. y  e.  B  ( x  <_  y  ->  m  <_  ( G `  y ) )  /\  E. n  e.  RR  A. z  e.  A  (
m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n ) )  ->  E. x  e.  RR  E. n  e.  RR  A. y  e.  B  (
x  <_  y  ->  ( abs `  ( ( F  o.  G ) `
 y ) )  <_  n ) ) )
3711, 36mpand 711 . . . 4  |-  ( (
ph  /\  m  e.  RR )  ->  ( E. n  e.  RR  A. z  e.  A  (
m  <_  z  ->  ( abs `  ( F `
 z ) )  <_  n )  ->  E. x  e.  RR  E. n  e.  RR  A. y  e.  B  (
x  <_  y  ->  ( abs `  ( ( F  o.  G ) `
 y ) )  <_  n ) ) )
3837rexlimdva 3031 . . 3  |-  ( ph  ->  ( E. m  e.  RR  E. n  e.  RR  A. z  e.  A  ( m  <_ 
z  ->  ( abs `  ( F `  z
) )  <_  n
)  ->  E. x  e.  RR  E. n  e.  RR  A. y  e.  B  ( x  <_ 
y  ->  ( abs `  ( ( F  o.  G ) `  y
) )  <_  n
) ) )
3910, 38mpd 15 . 2  |-  ( ph  ->  E. x  e.  RR  E. n  e.  RR  A. y  e.  B  (
x  <_  y  ->  ( abs `  ( ( F  o.  G ) `
 y ) )  <_  n ) )
40 fco 6058 . . . 4  |-  ( ( F : A --> CC  /\  G : B --> A )  ->  ( F  o.  G ) : B --> CC )
412, 13, 40syl2anc 693 . . 3  |-  ( ph  ->  ( F  o.  G
) : B --> CC )
42 o1co.4 . . 3  |-  ( ph  ->  B  C_  RR )
43 elo12 14258 . . 3  |-  ( ( ( F  o.  G
) : B --> CC  /\  B  C_  RR )  -> 
( ( F  o.  G )  e.  O(1)  <->  E. x  e.  RR  E. n  e.  RR  A. y  e.  B  ( x  <_ 
y  ->  ( abs `  ( ( F  o.  G ) `  y
) )  <_  n
) ) )
4441, 42, 43syl2anc 693 . 2  |-  ( ph  ->  ( ( F  o.  G )  e.  O(1)  <->  E. x  e.  RR  E. n  e.  RR  A. y  e.  B  ( x  <_ 
y  ->  ( abs `  ( ( F  o.  G ) `  y
) )  <_  n
) ) )
4539, 44mpbird 247 1  |-  ( ph  ->  ( F  o.  G
)  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   class class class wbr 4653   dom cdm 5114    o. ccom 5118   -->wf 5884   ` cfv 5888   CCcc 9934   RRcr 9935    <_ cle 10075   abscabs 13974   O(1)co1 14217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ico 12181  df-o1 14221
This theorem is referenced by:  o1compt  14318
  Copyright terms: Public domain W3C validator