| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrisum0 | Structured version Visualization version Unicode version | ||
| Description: The sum |
| Ref | Expression |
|---|---|
| rpvmasum.z |
|
| rpvmasum.l |
|
| rpvmasum.a |
|
| rpvmasum2.g |
|
| rpvmasum2.d |
|
| rpvmasum2.1 |
|
| rpvmasum2.w |
|
| dchrisum0.b |
|
| Ref | Expression |
|---|---|
| dchrisum0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpvmasum.z |
. 2
| |
| 2 | rpvmasum.l |
. 2
| |
| 3 | rpvmasum.a |
. 2
| |
| 4 | rpvmasum2.g |
. 2
| |
| 5 | rpvmasum2.d |
. 2
| |
| 6 | rpvmasum2.1 |
. 2
| |
| 7 | eqid 2622 |
. 2
| |
| 8 | rpvmasum2.w |
. . . . 5
| |
| 9 | ssrab2 3687 |
. . . . 5
| |
| 10 | 8, 9 | eqsstri 3635 |
. . . 4
|
| 11 | difss 3737 |
. . . 4
| |
| 12 | 10, 11 | sstri 3612 |
. . 3
|
| 13 | dchrisum0.b |
. . 3
| |
| 14 | 12, 13 | sseldi 3601 |
. 2
|
| 15 | 1, 2, 3, 4, 5, 6, 8, 13 | dchrisum0re 25202 |
. 2
|
| 16 | fveq2 6191 |
. . . . . . . 8
| |
| 17 | 16 | oveq2d 6666 |
. . . . . . 7
|
| 18 | rpre 11839 |
. . . . . . . 8
| |
| 19 | 18 | adantl 482 |
. . . . . . 7
|
| 20 | 14 | ad3antrrr 766 |
. . . . . . . . . 10
|
| 21 | elrabi 3359 |
. . . . . . . . . . . 12
| |
| 22 | 21 | nnzd 11481 |
. . . . . . . . . . 11
|
| 23 | 22 | adantl 482 |
. . . . . . . . . 10
|
| 24 | 4, 1, 5, 2, 20, 23 | dchrzrhcl 24970 |
. . . . . . . . 9
|
| 25 | elfznn 12370 |
. . . . . . . . . . . . . 14
| |
| 26 | 25 | adantl 482 |
. . . . . . . . . . . . 13
|
| 27 | 26 | nnrpd 11870 |
. . . . . . . . . . . 12
|
| 28 | 27 | rpsqrtcld 14150 |
. . . . . . . . . . 11
|
| 29 | 28 | rpcnd 11874 |
. . . . . . . . . 10
|
| 30 | 29 | adantr 481 |
. . . . . . . . 9
|
| 31 | 28 | rpne0d 11877 |
. . . . . . . . . 10
|
| 32 | 31 | adantr 481 |
. . . . . . . . 9
|
| 33 | 24, 30, 32 | divcld 10801 |
. . . . . . . 8
|
| 34 | 33 | anasss 679 |
. . . . . . 7
|
| 35 | 17, 19, 34 | dvdsflsumcom 24914 |
. . . . . 6
|
| 36 | 1, 2, 3, 4, 5, 6, 7 | dchrisum0fval 25194 |
. . . . . . . . . 10
|
| 37 | 26, 36 | syl 17 |
. . . . . . . . 9
|
| 38 | 37 | oveq1d 6665 |
. . . . . . . 8
|
| 39 | fzfid 12772 |
. . . . . . . . . 10
| |
| 40 | dvdsssfz1 15040 |
. . . . . . . . . . 11
| |
| 41 | 26, 40 | syl 17 |
. . . . . . . . . 10
|
| 42 | ssfi 8180 |
. . . . . . . . . 10
| |
| 43 | 39, 41, 42 | syl2anc 693 |
. . . . . . . . 9
|
| 44 | 43, 29, 24, 31 | fsumdivc 14518 |
. . . . . . . 8
|
| 45 | 38, 44 | eqtrd 2656 |
. . . . . . 7
|
| 46 | 45 | sumeq2dv 14433 |
. . . . . 6
|
| 47 | rprege0 11847 |
. . . . . . . . . . 11
| |
| 48 | 47 | adantl 482 |
. . . . . . . . . 10
|
| 49 | resqrtth 13996 |
. . . . . . . . . 10
| |
| 50 | 48, 49 | syl 17 |
. . . . . . . . 9
|
| 51 | 50 | fveq2d 6195 |
. . . . . . . 8
|
| 52 | 51 | oveq2d 6666 |
. . . . . . 7
|
| 53 | 50 | oveq1d 6665 |
. . . . . . . . . . 11
|
| 54 | 53 | fveq2d 6195 |
. . . . . . . . . 10
|
| 55 | 54 | oveq2d 6666 |
. . . . . . . . 9
|
| 56 | 55 | sumeq1d 14431 |
. . . . . . . 8
|
| 57 | 56 | adantr 481 |
. . . . . . 7
|
| 58 | 52, 57 | sumeq12dv 14437 |
. . . . . 6
|
| 59 | 35, 46, 58 | 3eqtr4d 2666 |
. . . . 5
|
| 60 | 59 | mpteq2dva 4744 |
. . . 4
|
| 61 | rpsqrtcl 14005 |
. . . . . 6
| |
| 62 | 61 | adantl 482 |
. . . . 5
|
| 63 | eqidd 2623 |
. . . . 5
| |
| 64 | eqidd 2623 |
. . . . 5
| |
| 65 | oveq1 6657 |
. . . . . . . 8
| |
| 66 | 65 | fveq2d 6195 |
. . . . . . 7
|
| 67 | 66 | oveq2d 6666 |
. . . . . 6
|
| 68 | 65 | oveq1d 6665 |
. . . . . . . . . 10
|
| 69 | 68 | fveq2d 6195 |
. . . . . . . . 9
|
| 70 | 69 | oveq2d 6666 |
. . . . . . . 8
|
| 71 | 70 | sumeq1d 14431 |
. . . . . . 7
|
| 72 | 71 | adantr 481 |
. . . . . 6
|
| 73 | 67, 72 | sumeq12dv 14437 |
. . . . 5
|
| 74 | 62, 63, 64, 73 | fmptco 6396 |
. . . 4
|
| 75 | 60, 74 | eqtr4d 2659 |
. . 3
|
| 76 | eqid 2622 |
. . . . . . . 8
| |
| 77 | 1, 2, 3, 4, 5, 6, 8, 13, 76 | dchrisum0lema 25203 |
. . . . . . 7
|
| 78 | 3 | adantr 481 |
. . . . . . . . . 10
|
| 79 | 13 | adantr 481 |
. . . . . . . . . 10
|
| 80 | simprl 794 |
. . . . . . . . . 10
| |
| 81 | simprrl 804 |
. . . . . . . . . 10
| |
| 82 | simprrr 805 |
. . . . . . . . . 10
| |
| 83 | 1, 2, 78, 4, 5, 6, 8, 79, 76, 80, 81, 82 | dchrisum0lem3 25208 |
. . . . . . . . 9
|
| 84 | 83 | rexlimdvaa 3032 |
. . . . . . . 8
|
| 85 | 84 | exlimdv 1861 |
. . . . . . 7
|
| 86 | 77, 85 | mpd 15 |
. . . . . 6
|
| 87 | o1f 14260 |
. . . . . 6
| |
| 88 | 86, 87 | syl 17 |
. . . . 5
|
| 89 | sumex 14418 |
. . . . . . 7
| |
| 90 | eqid 2622 |
. . . . . . 7
| |
| 91 | 89, 90 | dmmpti 6023 |
. . . . . 6
|
| 92 | 91 | feq2i 6037 |
. . . . 5
|
| 93 | 88, 92 | sylib 208 |
. . . 4
|
| 94 | rpssre 11843 |
. . . . 5
| |
| 95 | 94 | a1i 11 |
. . . 4
|
| 96 | resqcl 12931 |
. . . . . 6
| |
| 97 | 96 | adantl 482 |
. . . . 5
|
| 98 | 0red 10041 |
. . . . . . . 8
| |
| 99 | simplr 792 |
. . . . . . . 8
| |
| 100 | simplrr 801 |
. . . . . . . . . 10
| |
| 101 | 47 | ad2antrl 764 |
. . . . . . . . . . . 12
|
| 102 | 101 | adantr 481 |
. . . . . . . . . . 11
|
| 103 | 102, 49 | syl 17 |
. . . . . . . . . 10
|
| 104 | 100, 103 | breqtrrd 4681 |
. . . . . . . . 9
|
| 105 | 99 | adantr 481 |
. . . . . . . . . 10
|
| 106 | 62 | rpred 11872 |
. . . . . . . . . . . 12
|
| 107 | 106 | ad2ant2r 783 |
. . . . . . . . . . 11
|
| 108 | 107 | adantr 481 |
. . . . . . . . . 10
|
| 109 | simpr 477 |
. . . . . . . . . 10
| |
| 110 | sqrtge0 13998 |
. . . . . . . . . . . 12
| |
| 111 | 101, 110 | syl 17 |
. . . . . . . . . . 11
|
| 112 | 111 | adantr 481 |
. . . . . . . . . 10
|
| 113 | 105, 108, 109, 112 | le2sqd 13044 |
. . . . . . . . 9
|
| 114 | 104, 113 | mpbird 247 |
. . . . . . . 8
|
| 115 | 99 | adantr 481 |
. . . . . . . . 9
|
| 116 | 0red 10041 |
. . . . . . . . 9
| |
| 117 | 107 | adantr 481 |
. . . . . . . . 9
|
| 118 | simpr 477 |
. . . . . . . . 9
| |
| 119 | 111 | adantr 481 |
. . . . . . . . 9
|
| 120 | 115, 116, 117, 118, 119 | letrd 10194 |
. . . . . . . 8
|
| 121 | 98, 99, 114, 120 | lecasei 10143 |
. . . . . . 7
|
| 122 | 121 | expr 643 |
. . . . . 6
|
| 123 | 122 | ralrimiva 2966 |
. . . . 5
|
| 124 | breq1 4656 |
. . . . . . . 8
| |
| 125 | 124 | imbi1d 331 |
. . . . . . 7
|
| 126 | 125 | ralbidv 2986 |
. . . . . 6
|
| 127 | 126 | rspcev 3309 |
. . . . 5
|
| 128 | 97, 123, 127 | syl2anc 693 |
. . . 4
|
| 129 | 93, 86, 62, 95, 128 | o1compt 14318 |
. . 3
|
| 130 | 75, 129 | eqeltrd 2701 |
. 2
|
| 131 | 1, 2, 3, 4, 5, 6, 7, 14, 15, 130 | dchrisum0fno1 25200 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-disj 4621 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-rpss 6937 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-omul 7565 df-er 7742 df-ec 7744 df-qs 7748 df-map 7859 df-pm 7860 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-fi 8317 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-acn 8768 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-xnn0 11364 df-z 11378 df-dec 11494 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-ioo 12179 df-ioc 12180 df-ico 12181 df-icc 12182 df-fz 12327 df-fzo 12466 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-fac 13061 df-bc 13090 df-hash 13118 df-word 13299 df-concat 13301 df-s1 13302 df-shft 13807 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-limsup 14202 df-clim 14219 df-rlim 14220 df-o1 14221 df-lo1 14222 df-sum 14417 df-ef 14798 df-e 14799 df-sin 14800 df-cos 14801 df-pi 14803 df-dvds 14984 df-gcd 15217 df-prm 15386 df-numer 15443 df-denom 15444 df-phi 15471 df-pc 15542 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-hom 15966 df-cco 15967 df-rest 16083 df-topn 16084 df-0g 16102 df-gsum 16103 df-topgen 16104 df-pt 16105 df-prds 16108 df-xrs 16162 df-qtop 16167 df-imas 16168 df-qus 16169 df-xps 16170 df-mre 16246 df-mrc 16247 df-acs 16249 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mhm 17335 df-submnd 17336 df-grp 17425 df-minusg 17426 df-sbg 17427 df-mulg 17541 df-subg 17591 df-nsg 17592 df-eqg 17593 df-ghm 17658 df-gim 17701 df-ga 17723 df-cntz 17750 df-oppg 17776 df-od 17948 df-gex 17949 df-pgp 17950 df-lsm 18051 df-pj1 18052 df-cmn 18195 df-abl 18196 df-cyg 18280 df-dprd 18394 df-dpj 18395 df-mgp 18490 df-ur 18502 df-ring 18549 df-cring 18550 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-dvr 18683 df-rnghom 18715 df-drng 18749 df-subrg 18778 df-lmod 18865 df-lss 18933 df-lsp 18972 df-sra 19172 df-rgmod 19173 df-lidl 19174 df-rsp 19175 df-2idl 19232 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-fbas 19743 df-fg 19744 df-cnfld 19747 df-zring 19819 df-zrh 19852 df-zn 19855 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-cld 20823 df-ntr 20824 df-cls 20825 df-nei 20902 df-lp 20940 df-perf 20941 df-cn 21031 df-cnp 21032 df-haus 21119 df-cmp 21190 df-tx 21365 df-hmeo 21558 df-fil 21650 df-fm 21742 df-flim 21743 df-flf 21744 df-xms 22125 df-ms 22126 df-tms 22127 df-cncf 22681 df-0p 23437 df-limc 23630 df-dv 23631 df-ply 23944 df-idp 23945 df-coe 23946 df-dgr 23947 df-quot 24046 df-log 24303 df-cxp 24304 df-em 24719 df-cht 24823 df-vma 24824 df-chp 24825 df-ppi 24826 df-mu 24827 df-dchr 24958 |
| This theorem is referenced by: dchrisumn0 25210 rpvmasum 25215 |
| Copyright terms: Public domain | W3C validator |