Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpinvOLD Structured version   Visualization version   Unicode version

Theorem ogrpinvOLD 29715
Description: In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 30-Jan-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
ogrpsub.0  |-  B  =  ( Base `  G
)
ogrpsub.1  |-  .<_  =  ( le `  G )
ogrpinv.2  |-  I  =  ( invg `  G )
ogrpinv.3  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
ogrpinvOLD  |-  ( ( G  e. oGrp  /\  X  e.  B  /\  .0.  .<_  X )  ->  ( I `  X )  .<_  .0.  )

Proof of Theorem ogrpinvOLD
StepHypRef Expression
1 isogrp 29702 . . . . 5  |-  ( G  e. oGrp 
<->  ( G  e.  Grp  /\  G  e. oMnd ) )
21simprbi 480 . . . 4  |-  ( G  e. oGrp  ->  G  e. oMnd )
323ad2ant1 1082 . . 3  |-  ( ( G  e. oGrp  /\  X  e.  B  /\  .0.  .<_  X )  ->  G  e. oMnd )
41simplbi 476 . . . . 5  |-  ( G  e. oGrp  ->  G  e.  Grp )
543ad2ant1 1082 . . . 4  |-  ( ( G  e. oGrp  /\  X  e.  B  /\  .0.  .<_  X )  ->  G  e.  Grp )
6 ogrpsub.0 . . . . 5  |-  B  =  ( Base `  G
)
7 ogrpinv.3 . . . . 5  |-  .0.  =  ( 0g `  G )
86, 7grpidcl 17450 . . . 4  |-  ( G  e.  Grp  ->  .0.  e.  B )
95, 8syl 17 . . 3  |-  ( ( G  e. oGrp  /\  X  e.  B  /\  .0.  .<_  X )  ->  .0.  e.  B )
10 simp2 1062 . . 3  |-  ( ( G  e. oGrp  /\  X  e.  B  /\  .0.  .<_  X )  ->  X  e.  B )
11 ogrpinv.2 . . . . 5  |-  I  =  ( invg `  G )
126, 11grpinvcl 17467 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( I `  X
)  e.  B )
135, 10, 12syl2anc 693 . . 3  |-  ( ( G  e. oGrp  /\  X  e.  B  /\  .0.  .<_  X )  ->  ( I `  X )  e.  B
)
14 simp3 1063 . . 3  |-  ( ( G  e. oGrp  /\  X  e.  B  /\  .0.  .<_  X )  ->  .0.  .<_  X )
15 ogrpsub.1 . . . 4  |-  .<_  =  ( le `  G )
16 eqid 2622 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
176, 15, 16omndadd 29706 . . 3  |-  ( ( G  e. oMnd  /\  (  .0.  e.  B  /\  X  e.  B  /\  (
I `  X )  e.  B )  /\  .0.  .<_  X )  ->  (  .0.  ( +g  `  G
) ( I `  X ) )  .<_  ( X ( +g  `  G
) ( I `  X ) ) )
183, 9, 10, 13, 14, 17syl131anc 1339 . 2  |-  ( ( G  e. oGrp  /\  X  e.  B  /\  .0.  .<_  X )  ->  (  .0.  ( +g  `  G ) ( I `  X
) )  .<_  ( X ( +g  `  G
) ( I `  X ) ) )
196, 16, 7grplid 17452 . . 3  |-  ( ( G  e.  Grp  /\  ( I `  X
)  e.  B )  ->  (  .0.  ( +g  `  G ) ( I `  X ) )  =  ( I `
 X ) )
205, 13, 19syl2anc 693 . 2  |-  ( ( G  e. oGrp  /\  X  e.  B  /\  .0.  .<_  X )  ->  (  .0.  ( +g  `  G ) ( I `  X
) )  =  ( I `  X ) )
216, 16, 7, 11grprinv 17469 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X ( +g  `  G ) ( I `
 X ) )  =  .0.  )
225, 10, 21syl2anc 693 . 2  |-  ( ( G  e. oGrp  /\  X  e.  B  /\  .0.  .<_  X )  ->  ( X
( +g  `  G ) ( I `  X
) )  =  .0.  )
2318, 20, 223brtr3d 4684 1  |-  ( ( G  e. oGrp  /\  X  e.  B  /\  .0.  .<_  X )  ->  ( I `  X )  .<_  .0.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   lecple 15948   0gc0g 16100   Grpcgrp 17422   invgcminusg 17423  oMndcomnd 29697  oGrpcogrp 29698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-omnd 29699  df-ogrp 29700
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator