| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omsinds | Structured version Visualization version Unicode version | ||
| Description: Strong (or "total") induction principle over the finite ordinals. (Contributed by Scott Fenton, 17-Jul-2015.) |
| Ref | Expression |
|---|---|
| omsinds.1 |
|
| omsinds.2 |
|
| omsinds.3 |
|
| Ref | Expression |
|---|---|
| omsinds |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omsson 7069 |
. . 3
| |
| 2 | epweon 6983 |
. . 3
| |
| 3 | wess 5101 |
. . 3
| |
| 4 | 1, 2, 3 | mp2 9 |
. 2
|
| 5 | epse 5097 |
. 2
| |
| 6 | omsinds.1 |
. 2
| |
| 7 | omsinds.2 |
. 2
| |
| 8 | predep 5706 |
. . . . 5
| |
| 9 | ordom 7074 |
. . . . . . 7
| |
| 10 | ordtr 5737 |
. . . . . . 7
| |
| 11 | trss 4761 |
. . . . . . 7
| |
| 12 | 9, 10, 11 | mp2b 10 |
. . . . . 6
|
| 13 | sseqin2 3817 |
. . . . . 6
| |
| 14 | 12, 13 | sylib 208 |
. . . . 5
|
| 15 | 8, 14 | eqtrd 2656 |
. . . 4
|
| 16 | 15 | raleqdv 3144 |
. . 3
|
| 17 | omsinds.3 |
. . 3
| |
| 18 | 16, 17 | sylbid 230 |
. 2
|
| 19 | 4, 5, 6, 7, 18 | wfis3 5721 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-om 7066 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |