MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omssnlim Structured version   Visualization version   Unicode version

Theorem omssnlim 7079
Description: The class of natural numbers is a subclass of the class of non-limit ordinal numbers. Exercise 4 of [TakeutiZaring] p. 42. (Contributed by NM, 2-Nov-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
omssnlim  |-  om  C_  { x  e.  On  |  -.  Lim  x }

Proof of Theorem omssnlim
StepHypRef Expression
1 omsson 7069 . 2  |-  om  C_  On
2 nnlim 7078 . . 3  |-  ( x  e.  om  ->  -.  Lim  x )
32rgen 2922 . 2  |-  A. x  e.  om  -.  Lim  x
4 ssrab 3680 . 2  |-  ( om  C_  { x  e.  On  |  -.  Lim  x }  <->  ( om  C_  On  /\  A. x  e.  om  -.  Lim  x ) )
51, 3, 4mpbir2an 955 1  |-  om  C_  { x  e.  On  |  -.  Lim  x }
Colors of variables: wff setvar class
Syntax hints:   -. wn 3   A.wral 2912   {crab 2916    C_ wss 3574   Oncon0 5723   Lim wlim 5724   omcom 7065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-om 7066
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator