| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onmindif | Structured version Visualization version Unicode version | ||
| Description: When its successor is subtracted from a class of ordinal numbers, an ordinal number is less than the minimum of the resulting subclass. (Contributed by NM, 1-Dec-2003.) |
| Ref | Expression |
|---|---|
| onmindif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3584 |
. . . 4
| |
| 2 | ssel2 3598 |
. . . . . . . . 9
| |
| 3 | ontri1 5757 |
. . . . . . . . . . 11
| |
| 4 | onsssuc 5813 |
. . . . . . . . . . 11
| |
| 5 | 3, 4 | bitr3d 270 |
. . . . . . . . . 10
|
| 6 | 5 | con1bid 345 |
. . . . . . . . 9
|
| 7 | 2, 6 | sylan 488 |
. . . . . . . 8
|
| 8 | 7 | biimpd 219 |
. . . . . . 7
|
| 9 | 8 | exp31 630 |
. . . . . 6
|
| 10 | 9 | com23 86 |
. . . . 5
|
| 11 | 10 | imp4b 613 |
. . . 4
|
| 12 | 1, 11 | syl5bi 232 |
. . 3
|
| 13 | 12 | ralrimiv 2965 |
. 2
|
| 14 | elintg 4483 |
. . 3
| |
| 15 | 14 | adantl 482 |
. 2
|
| 16 | 13, 15 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-on 5727 df-suc 5729 |
| This theorem is referenced by: unblem3 8214 fin23lem26 9147 |
| Copyright terms: Public domain | W3C validator |