MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnfbas Structured version   Visualization version   Unicode version

Theorem opnfbas 21646
Description: The collection of open supersets of a nonempty set in a topology is a neighborhoods of the set, one of the motivations for the filter concept. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Aug-2015.)
Hypothesis
Ref Expression
opnfbas.1  |-  X  = 
U. J
Assertion
Ref Expression
opnfbas  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  { x  e.  J  |  S  C_  x }  e.  (
fBas `  X )
)
Distinct variable groups:    x, J    x, S    x, X

Proof of Theorem opnfbas
Dummy variables  s 
r  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3687 . . . 4  |-  { x  e.  J  |  S  C_  x }  C_  J
2 opnfbas.1 . . . . . 6  |-  X  = 
U. J
32eqimss2i 3660 . . . . 5  |-  U. J  C_  X
4 sspwuni 4611 . . . . 5  |-  ( J 
C_  ~P X  <->  U. J  C_  X )
53, 4mpbir 221 . . . 4  |-  J  C_  ~P X
61, 5sstri 3612 . . 3  |-  { x  e.  J  |  S  C_  x }  C_  ~P X
76a1i 11 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  { x  e.  J  |  S  C_  x }  C_  ~P X )
82topopn 20711 . . . . . . 7  |-  ( J  e.  Top  ->  X  e.  J )
98anim1i 592 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( X  e.  J  /\  S  C_  X ) )
1093adant3 1081 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( X  e.  J  /\  S  C_  X ) )
11 sseq2 3627 . . . . . 6  |-  ( x  =  X  ->  ( S  C_  x  <->  S  C_  X
) )
1211elrab 3363 . . . . 5  |-  ( X  e.  { x  e.  J  |  S  C_  x }  <->  ( X  e.  J  /\  S  C_  X ) )
1310, 12sylibr 224 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  X  e.  { x  e.  J  |  S  C_  x }
)
14 ne0i 3921 . . . 4  |-  ( X  e.  { x  e.  J  |  S  C_  x }  ->  { x  e.  J  |  S  C_  x }  =/=  (/) )
1513, 14syl 17 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  { x  e.  J  |  S  C_  x }  =/=  (/) )
16 ss0 3974 . . . . . . 7  |-  ( S 
C_  (/)  ->  S  =  (/) )
1716necon3ai 2819 . . . . . 6  |-  ( S  =/=  (/)  ->  -.  S  C_  (/) )
18173ad2ant3 1084 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  -.  S  C_  (/) )
1918intnand 962 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  -.  ( (/)  e.  J  /\  S  C_  (/) ) )
20 df-nel 2898 . . . . 5  |-  ( (/)  e/ 
{ x  e.  J  |  S  C_  x }  <->  -.  (/)  e.  { x  e.  J  |  S  C_  x } )
21 sseq2 3627 . . . . . . 7  |-  ( x  =  (/)  ->  ( S 
C_  x  <->  S  C_  (/) ) )
2221elrab 3363 . . . . . 6  |-  ( (/)  e.  { x  e.  J  |  S  C_  x }  <->  (
(/)  e.  J  /\  S  C_  (/) ) )
2322notbii 310 . . . . 5  |-  ( -.  (/)  e.  { x  e.  J  |  S  C_  x }  <->  -.  ( (/)  e.  J  /\  S  C_  (/) ) )
2420, 23bitr2i 265 . . . 4  |-  ( -.  ( (/)  e.  J  /\  S  C_  (/) )  <->  (/)  e/  {
x  e.  J  |  S  C_  x } )
2519, 24sylib 208 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  (/)  e/  {
x  e.  J  |  S  C_  x } )
26 sseq2 3627 . . . . . . 7  |-  ( x  =  r  ->  ( S  C_  x  <->  S  C_  r
) )
2726elrab 3363 . . . . . 6  |-  ( r  e.  { x  e.  J  |  S  C_  x }  <->  ( r  e.  J  /\  S  C_  r ) )
28 sseq2 3627 . . . . . . 7  |-  ( x  =  s  ->  ( S  C_  x  <->  S  C_  s
) )
2928elrab 3363 . . . . . 6  |-  ( s  e.  { x  e.  J  |  S  C_  x }  <->  ( s  e.  J  /\  S  C_  s ) )
3027, 29anbi12i 733 . . . . 5  |-  ( ( r  e.  { x  e.  J  |  S  C_  x }  /\  s  e.  { x  e.  J  |  S  C_  x }
)  <->  ( ( r  e.  J  /\  S  C_  r )  /\  (
s  e.  J  /\  S  C_  s ) ) )
31 simpl 473 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  ( ( r  e.  J  /\  S  C_  r )  /\  (
s  e.  J  /\  S  C_  s ) ) )  ->  J  e.  Top )
32 simprll 802 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  ( ( r  e.  J  /\  S  C_  r )  /\  (
s  e.  J  /\  S  C_  s ) ) )  ->  r  e.  J )
33 simprrl 804 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  ( ( r  e.  J  /\  S  C_  r )  /\  (
s  e.  J  /\  S  C_  s ) ) )  ->  s  e.  J )
34 inopn 20704 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  r  e.  J  /\  s  e.  J )  ->  ( r  i^i  s
)  e.  J )
3531, 32, 33, 34syl3anc 1326 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  ( ( r  e.  J  /\  S  C_  r )  /\  (
s  e.  J  /\  S  C_  s ) ) )  ->  ( r  i^i  s )  e.  J
)
36 ssin 3835 . . . . . . . . . . . . 13  |-  ( ( S  C_  r  /\  S  C_  s )  <->  S  C_  (
r  i^i  s )
)
3736biimpi 206 . . . . . . . . . . . 12  |-  ( ( S  C_  r  /\  S  C_  s )  ->  S  C_  ( r  i^i  s ) )
3837ad2ant2l 782 . . . . . . . . . . 11  |-  ( ( ( r  e.  J  /\  S  C_  r )  /\  ( s  e.  J  /\  S  C_  s ) )  ->  S  C_  ( r  i^i  s ) )
3938adantl 482 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  ( ( r  e.  J  /\  S  C_  r )  /\  (
s  e.  J  /\  S  C_  s ) ) )  ->  S  C_  (
r  i^i  s )
)
4035, 39jca 554 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  ( ( r  e.  J  /\  S  C_  r )  /\  (
s  e.  J  /\  S  C_  s ) ) )  ->  ( (
r  i^i  s )  e.  J  /\  S  C_  ( r  i^i  s
) ) )
41403ad2antl1 1223 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  /\  (
( r  e.  J  /\  S  C_  r )  /\  ( s  e.  J  /\  S  C_  s ) ) )  ->  ( ( r  i^i  s )  e.  J  /\  S  C_  ( r  i^i  s
) ) )
42 sseq2 3627 . . . . . . . . 9  |-  ( x  =  ( r  i^i  s )  ->  ( S  C_  x  <->  S  C_  (
r  i^i  s )
) )
4342elrab 3363 . . . . . . . 8  |-  ( ( r  i^i  s )  e.  { x  e.  J  |  S  C_  x }  <->  ( ( r  i^i  s )  e.  J  /\  S  C_  ( r  i^i  s
) ) )
4441, 43sylibr 224 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  /\  (
( r  e.  J  /\  S  C_  r )  /\  ( s  e.  J  /\  S  C_  s ) ) )  ->  ( r  i^i  s )  e.  {
x  e.  J  |  S  C_  x } )
45 ssid 3624 . . . . . . 7  |-  ( r  i^i  s )  C_  ( r  i^i  s
)
46 sseq1 3626 . . . . . . . 8  |-  ( t  =  ( r  i^i  s )  ->  (
t  C_  ( r  i^i  s )  <->  ( r  i^i  s )  C_  (
r  i^i  s )
) )
4746rspcev 3309 . . . . . . 7  |-  ( ( ( r  i^i  s
)  e.  { x  e.  J  |  S  C_  x }  /\  (
r  i^i  s )  C_  ( r  i^i  s
) )  ->  E. t  e.  { x  e.  J  |  S  C_  x }
t  C_  ( r  i^i  s ) )
4844, 45, 47sylancl 694 . . . . . 6  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  /\  (
( r  e.  J  /\  S  C_  r )  /\  ( s  e.  J  /\  S  C_  s ) ) )  ->  E. t  e.  {
x  e.  J  |  S  C_  x } t 
C_  ( r  i^i  s ) )
4948ex 450 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  (
( ( r  e.  J  /\  S  C_  r )  /\  (
s  e.  J  /\  S  C_  s ) )  ->  E. t  e.  {
x  e.  J  |  S  C_  x } t 
C_  ( r  i^i  s ) ) )
5030, 49syl5bi 232 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  (
( r  e.  {
x  e.  J  |  S  C_  x }  /\  s  e.  { x  e.  J  |  S  C_  x } )  ->  E. t  e.  { x  e.  J  |  S  C_  x } t  C_  ( r  i^i  s
) ) )
5150ralrimivv 2970 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  A. r  e.  { x  e.  J  |  S  C_  x } A. s  e.  { x  e.  J  |  S  C_  x } E. t  e.  { x  e.  J  |  S  C_  x }
t  C_  ( r  i^i  s ) )
5215, 25, 513jca 1242 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( { x  e.  J  |  S  C_  x }  =/=  (/)  /\  (/)  e/  {
x  e.  J  |  S  C_  x }  /\  A. r  e.  { x  e.  J  |  S  C_  x } A. s  e.  { x  e.  J  |  S  C_  x } E. t  e.  { x  e.  J  |  S  C_  x } t  C_  ( r  i^i  s
) ) )
53 isfbas2 21639 . . . 4  |-  ( X  e.  J  ->  ( { x  e.  J  |  S  C_  x }  e.  ( fBas `  X
)  <->  ( { x  e.  J  |  S  C_  x }  C_  ~P X  /\  ( { x  e.  J  |  S  C_  x }  =/=  (/)  /\  (/)  e/  {
x  e.  J  |  S  C_  x }  /\  A. r  e.  { x  e.  J  |  S  C_  x } A. s  e.  { x  e.  J  |  S  C_  x } E. t  e.  { x  e.  J  |  S  C_  x } t  C_  ( r  i^i  s
) ) ) ) )
548, 53syl 17 . . 3  |-  ( J  e.  Top  ->  ( { x  e.  J  |  S  C_  x }  e.  ( fBas `  X
)  <->  ( { x  e.  J  |  S  C_  x }  C_  ~P X  /\  ( { x  e.  J  |  S  C_  x }  =/=  (/)  /\  (/)  e/  {
x  e.  J  |  S  C_  x }  /\  A. r  e.  { x  e.  J  |  S  C_  x } A. s  e.  { x  e.  J  |  S  C_  x } E. t  e.  { x  e.  J  |  S  C_  x } t  C_  ( r  i^i  s
) ) ) ) )
55543ad2ant1 1082 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( { x  e.  J  |  S  C_  x }  e.  ( fBas `  X
)  <->  ( { x  e.  J  |  S  C_  x }  C_  ~P X  /\  ( { x  e.  J  |  S  C_  x }  =/=  (/)  /\  (/)  e/  {
x  e.  J  |  S  C_  x }  /\  A. r  e.  { x  e.  J  |  S  C_  x } A. s  e.  { x  e.  J  |  S  C_  x } E. t  e.  { x  e.  J  |  S  C_  x } t  C_  ( r  i^i  s
) ) ) ) )
567, 52, 55mpbir2and 957 1  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  { x  e.  J  |  S  C_  x }  e.  (
fBas `  X )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    e/ wnel 2897   A.wral 2912   E.wrex 2913   {crab 2916    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U.cuni 4436   ` cfv 5888   fBascfbas 19734   Topctop 20698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-fbas 19743  df-top 20699
This theorem is referenced by:  neifg  32366
  Copyright terms: Public domain W3C validator