MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trfbas2 Structured version   Visualization version   Unicode version

Theorem trfbas2 21647
Description: Conditions for the trace of a filter base  F to be a filter base. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
trfbas2  |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  (
( Ft  A )  e.  (
fBas `  A )  <->  -.  (/)  e.  ( Ft  A ) ) )

Proof of Theorem trfbas2
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6220 . . . 4  |-  ( F  e.  ( fBas `  Y
)  ->  Y  e.  dom  fBas )
2 ssexg 4804 . . . . 5  |-  ( ( A  C_  Y  /\  Y  e.  dom  fBas )  ->  A  e.  _V )
32ancoms 469 . . . 4  |-  ( ( Y  e.  dom  fBas  /\  A  C_  Y )  ->  A  e.  _V )
41, 3sylan 488 . . 3  |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  A  e.  _V )
5 restsspw 16092 . . . 4  |-  ( Ft  A )  C_  ~P A
65a1i 11 . . 3  |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  ( Ft  A )  C_  ~P A )
7 fbasne0 21634 . . . . . 6  |-  ( F  e.  ( fBas `  Y
)  ->  F  =/=  (/) )
87adantr 481 . . . . 5  |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  F  =/=  (/) )
9 n0 3931 . . . . 5  |-  ( F  =/=  (/)  <->  E. x  x  e.  F )
108, 9sylib 208 . . . 4  |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  E. x  x  e.  F )
11 elrestr 16089 . . . . . . . 8  |-  ( ( F  e.  ( fBas `  Y )  /\  A  e.  _V  /\  x  e.  F )  ->  (
x  i^i  A )  e.  ( Ft  A ) )
12113expia 1267 . . . . . . 7  |-  ( ( F  e.  ( fBas `  Y )  /\  A  e.  _V )  ->  (
x  e.  F  -> 
( x  i^i  A
)  e.  ( Ft  A ) ) )
134, 12syldan 487 . . . . . 6  |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  (
x  e.  F  -> 
( x  i^i  A
)  e.  ( Ft  A ) ) )
14 ne0i 3921 . . . . . 6  |-  ( ( x  i^i  A )  e.  ( Ft  A )  ->  ( Ft  A )  =/=  (/) )
1513, 14syl6 35 . . . . 5  |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  (
x  e.  F  -> 
( Ft  A )  =/=  (/) ) )
1615exlimdv 1861 . . . 4  |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  ( E. x  x  e.  F  ->  ( Ft  A )  =/=  (/) ) )
1710, 16mpd 15 . . 3  |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  ( Ft  A )  =/=  (/) )
18 fbasssin 21640 . . . . . . . 8  |-  ( ( F  e.  ( fBas `  Y )  /\  z  e.  F  /\  w  e.  F )  ->  E. x  e.  F  x  C_  (
z  i^i  w )
)
19183expb 1266 . . . . . . 7  |-  ( ( F  e.  ( fBas `  Y )  /\  (
z  e.  F  /\  w  e.  F )
)  ->  E. x  e.  F  x  C_  (
z  i^i  w )
)
2019adantlr 751 . . . . . 6  |-  ( ( ( F  e.  (
fBas `  Y )  /\  A  C_  Y )  /\  ( z  e.  F  /\  w  e.  F ) )  ->  E. x  e.  F  x  C_  ( z  i^i  w ) )
21 simplll 798 . . . . . . . 8  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  A  C_  Y
)  /\  ( z  e.  F  /\  w  e.  F ) )  /\  ( x  e.  F  /\  x  C_  ( z  i^i  w ) ) )  ->  F  e.  ( fBas `  Y )
)
224ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  A  C_  Y
)  /\  ( z  e.  F  /\  w  e.  F ) )  /\  ( x  e.  F  /\  x  C_  ( z  i^i  w ) ) )  ->  A  e.  _V )
23 simprl 794 . . . . . . . 8  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  A  C_  Y
)  /\  ( z  e.  F  /\  w  e.  F ) )  /\  ( x  e.  F  /\  x  C_  ( z  i^i  w ) ) )  ->  x  e.  F )
2421, 22, 23, 11syl3anc 1326 . . . . . . 7  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  A  C_  Y
)  /\  ( z  e.  F  /\  w  e.  F ) )  /\  ( x  e.  F  /\  x  C_  ( z  i^i  w ) ) )  ->  ( x  i^i  A )  e.  ( Ft  A ) )
25 ssrin 3838 . . . . . . . . 9  |-  ( x 
C_  ( z  i^i  w )  ->  (
x  i^i  A )  C_  ( ( z  i^i  w )  i^i  A
) )
2625ad2antll 765 . . . . . . . 8  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  A  C_  Y
)  /\  ( z  e.  F  /\  w  e.  F ) )  /\  ( x  e.  F  /\  x  C_  ( z  i^i  w ) ) )  ->  ( x  i^i  A )  C_  (
( z  i^i  w
)  i^i  A )
)
27 vex 3203 . . . . . . . . . 10  |-  x  e. 
_V
2827inex1 4799 . . . . . . . . 9  |-  ( x  i^i  A )  e. 
_V
2928elpw 4164 . . . . . . . 8  |-  ( ( x  i^i  A )  e.  ~P ( ( z  i^i  w )  i^i  A )  <->  ( x  i^i  A )  C_  (
( z  i^i  w
)  i^i  A )
)
3026, 29sylibr 224 . . . . . . 7  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  A  C_  Y
)  /\  ( z  e.  F  /\  w  e.  F ) )  /\  ( x  e.  F  /\  x  C_  ( z  i^i  w ) ) )  ->  ( x  i^i  A )  e.  ~P ( ( z  i^i  w )  i^i  A
) )
31 inelcm 4032 . . . . . . 7  |-  ( ( ( x  i^i  A
)  e.  ( Ft  A )  /\  ( x  i^i  A )  e. 
~P ( ( z  i^i  w )  i^i 
A ) )  -> 
( ( Ft  A )  i^i  ~P ( ( z  i^i  w )  i^i  A ) )  =/=  (/) )
3224, 30, 31syl2anc 693 . . . . . 6  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  A  C_  Y
)  /\  ( z  e.  F  /\  w  e.  F ) )  /\  ( x  e.  F  /\  x  C_  ( z  i^i  w ) ) )  ->  ( ( Ft  A )  i^i  ~P ( ( z  i^i  w )  i^i  A
) )  =/=  (/) )
3320, 32rexlimddv 3035 . . . . 5  |-  ( ( ( F  e.  (
fBas `  Y )  /\  A  C_  Y )  /\  ( z  e.  F  /\  w  e.  F ) )  -> 
( ( Ft  A )  i^i  ~P ( ( z  i^i  w )  i^i  A ) )  =/=  (/) )
3433ralrimivva 2971 . . . 4  |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  A. z  e.  F  A. w  e.  F  ( ( Ft  A )  i^i  ~P ( ( z  i^i  w )  i^i  A
) )  =/=  (/) )
35 vex 3203 . . . . . . 7  |-  z  e. 
_V
3635inex1 4799 . . . . . 6  |-  ( z  i^i  A )  e. 
_V
3736a1i 11 . . . . 5  |-  ( ( ( F  e.  (
fBas `  Y )  /\  A  C_  Y )  /\  z  e.  F
)  ->  ( z  i^i  A )  e.  _V )
38 elrest 16088 . . . . . 6  |-  ( ( F  e.  ( fBas `  Y )  /\  A  e.  _V )  ->  (
x  e.  ( Ft  A )  <->  E. z  e.  F  x  =  ( z  i^i  A ) ) )
394, 38syldan 487 . . . . 5  |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  (
x  e.  ( Ft  A )  <->  E. z  e.  F  x  =  ( z  i^i  A ) ) )
40 vex 3203 . . . . . . . 8  |-  w  e. 
_V
4140inex1 4799 . . . . . . 7  |-  ( w  i^i  A )  e. 
_V
4241a1i 11 . . . . . 6  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  A  C_  Y
)  /\  x  =  ( z  i^i  A
) )  /\  w  e.  F )  ->  (
w  i^i  A )  e.  _V )
43 elrest 16088 . . . . . . . 8  |-  ( ( F  e.  ( fBas `  Y )  /\  A  e.  _V )  ->  (
y  e.  ( Ft  A )  <->  E. w  e.  F  y  =  ( w  i^i  A ) ) )
444, 43syldan 487 . . . . . . 7  |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  (
y  e.  ( Ft  A )  <->  E. w  e.  F  y  =  ( w  i^i  A ) ) )
4544adantr 481 . . . . . 6  |-  ( ( ( F  e.  (
fBas `  Y )  /\  A  C_  Y )  /\  x  =  ( z  i^i  A ) )  ->  ( y  e.  ( Ft  A )  <->  E. w  e.  F  y  =  ( w  i^i  A ) ) )
46 ineq12 3809 . . . . . . . . . . 11  |-  ( ( x  =  ( z  i^i  A )  /\  y  =  ( w  i^i  A ) )  -> 
( x  i^i  y
)  =  ( ( z  i^i  A )  i^i  ( w  i^i 
A ) ) )
47 inindir 3831 . . . . . . . . . . 11  |-  ( ( z  i^i  w )  i^i  A )  =  ( ( z  i^i 
A )  i^i  (
w  i^i  A )
)
4846, 47syl6eqr 2674 . . . . . . . . . 10  |-  ( ( x  =  ( z  i^i  A )  /\  y  =  ( w  i^i  A ) )  -> 
( x  i^i  y
)  =  ( ( z  i^i  w )  i^i  A ) )
4948pweqd 4163 . . . . . . . . 9  |-  ( ( x  =  ( z  i^i  A )  /\  y  =  ( w  i^i  A ) )  ->  ~P ( x  i^i  y
)  =  ~P (
( z  i^i  w
)  i^i  A )
)
5049ineq2d 3814 . . . . . . . 8  |-  ( ( x  =  ( z  i^i  A )  /\  y  =  ( w  i^i  A ) )  -> 
( ( Ft  A )  i^i  ~P ( x  i^i  y ) )  =  ( ( Ft  A )  i^i  ~P (
( z  i^i  w
)  i^i  A )
) )
5150neeq1d 2853 . . . . . . 7  |-  ( ( x  =  ( z  i^i  A )  /\  y  =  ( w  i^i  A ) )  -> 
( ( ( Ft  A )  i^i  ~P (
x  i^i  y )
)  =/=  (/)  <->  ( ( Ft  A )  i^i  ~P ( ( z  i^i  w )  i^i  A
) )  =/=  (/) ) )
5251adantll 750 . . . . . 6  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  A  C_  Y
)  /\  x  =  ( z  i^i  A
) )  /\  y  =  ( w  i^i 
A ) )  -> 
( ( ( Ft  A )  i^i  ~P (
x  i^i  y )
)  =/=  (/)  <->  ( ( Ft  A )  i^i  ~P ( ( z  i^i  w )  i^i  A
) )  =/=  (/) ) )
5342, 45, 52ralxfr2d 4882 . . . . 5  |-  ( ( ( F  e.  (
fBas `  Y )  /\  A  C_  Y )  /\  x  =  ( z  i^i  A ) )  ->  ( A. y  e.  ( Ft  A
) ( ( Ft  A )  i^i  ~P (
x  i^i  y )
)  =/=  (/)  <->  A. w  e.  F  ( ( Ft  A )  i^i  ~P ( ( z  i^i  w )  i^i  A
) )  =/=  (/) ) )
5437, 39, 53ralxfr2d 4882 . . . 4  |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  ( A. x  e.  ( Ft  A ) A. y  e.  ( Ft  A ) ( ( Ft  A )  i^i  ~P ( x  i^i  y
) )  =/=  (/)  <->  A. z  e.  F  A. w  e.  F  ( ( Ft  A )  i^i  ~P ( ( z  i^i  w )  i^i  A
) )  =/=  (/) ) )
5534, 54mpbird 247 . . 3  |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  A. x  e.  ( Ft  A ) A. y  e.  ( Ft  A ) ( ( Ft  A )  i^i  ~P ( x  i^i  y
) )  =/=  (/) )
56 isfbas 21633 . . . . . 6  |-  ( A  e.  _V  ->  (
( Ft  A )  e.  (
fBas `  A )  <->  ( ( Ft  A )  C_  ~P A  /\  ( ( Ft  A )  =/=  (/)  /\  (/)  e/  ( Ft  A )  /\  A. x  e.  ( Ft  A
) A. y  e.  ( Ft  A ) ( ( Ft  A )  i^i  ~P ( x  i^i  y
) )  =/=  (/) ) ) ) )
5756baibd 948 . . . . 5  |-  ( ( A  e.  _V  /\  ( Ft  A )  C_  ~P A )  ->  (
( Ft  A )  e.  (
fBas `  A )  <->  ( ( Ft  A )  =/=  (/)  /\  (/)  e/  ( Ft  A )  /\  A. x  e.  ( Ft  A
) A. y  e.  ( Ft  A ) ( ( Ft  A )  i^i  ~P ( x  i^i  y
) )  =/=  (/) ) ) )
58 3anan32 1050 . . . . 5  |-  ( ( ( Ft  A )  =/=  (/)  /\  (/)  e/  ( Ft  A )  /\  A. x  e.  ( Ft  A
) A. y  e.  ( Ft  A ) ( ( Ft  A )  i^i  ~P ( x  i^i  y
) )  =/=  (/) )  <->  ( (
( Ft  A )  =/=  (/)  /\  A. x  e.  ( Ft  A
) A. y  e.  ( Ft  A ) ( ( Ft  A )  i^i  ~P ( x  i^i  y
) )  =/=  (/) )  /\  (/) 
e/  ( Ft  A ) ) )
5957, 58syl6bb 276 . . . 4  |-  ( ( A  e.  _V  /\  ( Ft  A )  C_  ~P A )  ->  (
( Ft  A )  e.  (
fBas `  A )  <->  ( ( ( Ft  A )  =/=  (/)  /\  A. x  e.  ( Ft  A ) A. y  e.  ( Ft  A ) ( ( Ft  A )  i^i  ~P ( x  i^i  y
) )  =/=  (/) )  /\  (/) 
e/  ( Ft  A ) ) ) )
6059baibd 948 . . 3  |-  ( ( ( A  e.  _V  /\  ( Ft  A )  C_  ~P A )  /\  (
( Ft  A )  =/=  (/)  /\  A. x  e.  ( Ft  A
) A. y  e.  ( Ft  A ) ( ( Ft  A )  i^i  ~P ( x  i^i  y
) )  =/=  (/) ) )  ->  ( ( Ft  A )  e.  ( fBas `  A )  <->  (/)  e/  ( Ft  A ) ) )
614, 6, 17, 55, 60syl22anc 1327 . 2  |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  (
( Ft  A )  e.  (
fBas `  A )  <->  (/)  e/  ( Ft  A ) ) )
62 df-nel 2898 . 2  |-  ( (/)  e/  ( Ft  A )  <->  -.  (/)  e.  ( Ft  A ) )
6361, 62syl6bb 276 1  |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  (
( Ft  A )  e.  (
fBas `  A )  <->  -.  (/)  e.  ( Ft  A ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794    e/ wnel 2897   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   dom cdm 5114   ` cfv 5888  (class class class)co 6650   ↾t crest 16081   fBascfbas 19734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-rest 16083  df-fbas 19743
This theorem is referenced by:  trfbas  21648  uzfbas  21702  trcfilu  22098
  Copyright terms: Public domain W3C validator