![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppne2 | Structured version Visualization version Unicode version |
Description: Points lying on opposite sides of a line cannot be on the line. (Contributed by Thierry Arnoux, 3-Mar-2020.) |
Ref | Expression |
---|---|
hpg.p |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
hpg.d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
hpg.i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
hpg.o |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
opphl.l |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
opphl.d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
opphl.g |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
oppcom.a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
oppcom.b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
oppcom.o |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
oppne2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppcom.o |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | hpg.p |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | hpg.d |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | hpg.i |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | hpg.o |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | oppcom.a |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | oppcom.b |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 2, 3, 4, 5, 6, 7 | islnopp 25631 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 1, 8 | mpbid 222 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 9 | simpld 475 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 10 | simprd 479 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-iota 5851 df-fv 5896 df-ov 6653 |
This theorem is referenced by: opphllem1 25639 opphllem2 25640 opphl 25646 lnopp2hpgb 25655 lnperpex 25695 |
Copyright terms: Public domain | W3C validator |