| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lnperpex | Structured version Visualization version Unicode version | ||
| Description: Existence of a
perpendicular to a line |
| Ref | Expression |
|---|---|
| lmiopp.p |
|
| lmiopp.m |
|
| lmiopp.i |
|
| lmiopp.l |
|
| lmiopp.g |
|
| lmiopp.h |
|
| lmiopp.d |
|
| lmiopp.o |
|
| lnperpex.a |
|
| lnperpex.q |
|
| lnperpex.1 |
|
| Ref | Expression |
|---|---|
| lnperpex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmiopp.p |
. . . . . 6
| |
| 2 | lmiopp.m |
. . . . . 6
| |
| 3 | lmiopp.i |
. . . . . 6
| |
| 4 | lmiopp.l |
. . . . . 6
| |
| 5 | lmiopp.g |
. . . . . . . . 9
| |
| 6 | 5 | ad2antrr 762 |
. . . . . . . 8
|
| 7 | 6 | ad2antrr 762 |
. . . . . . 7
|
| 8 | 7 | adantr 481 |
. . . . . 6
|
| 9 | simprl 794 |
. . . . . . 7
| |
| 10 | lmiopp.d |
. . . . . . . . . 10
| |
| 11 | lnperpex.a |
. . . . . . . . . 10
| |
| 12 | 1, 4, 3, 5, 10, 11 | tglnpt 25444 |
. . . . . . . . 9
|
| 13 | 12 | ad2antrr 762 |
. . . . . . . 8
|
| 14 | 13 | ad3antrrr 766 |
. . . . . . 7
|
| 15 | simprrl 804 |
. . . . . . . . . 10
| |
| 16 | 4, 8, 15 | perpln1 25605 |
. . . . . . . . 9
|
| 17 | 1, 3, 4, 8, 14, 9, 16 | tglnne 25523 |
. . . . . . . 8
|
| 18 | 17 | necomd 2849 |
. . . . . . 7
|
| 19 | 1, 3, 4, 8, 9, 14, 18 | tgelrnln 25525 |
. . . . . 6
|
| 20 | 10 | ad2antrr 762 |
. . . . . . . 8
|
| 21 | 20 | ad2antrr 762 |
. . . . . . 7
|
| 22 | 21 | adantr 481 |
. . . . . 6
|
| 23 | 1, 3, 4, 8, 9, 14, 18 | tglinecom 25530 |
. . . . . . 7
|
| 24 | 23, 15 | eqbrtrd 4675 |
. . . . . 6
|
| 25 | 1, 2, 3, 4, 8, 19, 22, 24 | perpcom 25608 |
. . . . 5
|
| 26 | simpr 477 |
. . . . . . 7
| |
| 27 | 26 | adantr 481 |
. . . . . 6
|
| 28 | lmiopp.o |
. . . . . . 7
| |
| 29 | lnperpex.q |
. . . . . . . . . 10
| |
| 30 | 29 | ad2antrr 762 |
. . . . . . . . 9
|
| 31 | 30 | ad2antrr 762 |
. . . . . . . 8
|
| 32 | 31 | adantr 481 |
. . . . . . 7
|
| 33 | simplr 792 |
. . . . . . . 8
| |
| 34 | 33 | adantr 481 |
. . . . . . 7
|
| 35 | simprrr 805 |
. . . . . . . 8
| |
| 36 | 1, 2, 3, 28, 4, 22, 8, 34, 9, 35 | oppcom 25636 |
. . . . . . 7
|
| 37 | 1, 3, 4, 28, 8, 22, 9, 32, 34, 36 | lnopp2hpgb 25655 |
. . . . . 6
|
| 38 | 27, 37 | mpbid 222 |
. . . . 5
|
| 39 | 25, 38 | jca 554 |
. . . 4
|
| 40 | eqid 2622 |
. . . . 5
| |
| 41 | 11 | ad2antrr 762 |
. . . . . 6
|
| 42 | 41 | ad2antrr 762 |
. . . . 5
|
| 43 | 1, 2, 3, 28, 4, 21, 7, 31, 33, 26 | oppne2 25634 |
. . . . 5
|
| 44 | lmiopp.h |
. . . . . . 7
| |
| 45 | 44 | ad2antrr 762 |
. . . . . 6
|
| 46 | 45 | ad2antrr 762 |
. . . . 5
|
| 47 | 1, 2, 3, 28, 4, 21, 7, 40, 42, 33, 43, 46 | oppperpex 25645 |
. . . 4
|
| 48 | 39, 47 | reximddv 3018 |
. . 3
|
| 49 | lnperpex.1 |
. . . . 5
| |
| 50 | 1, 3, 4, 5, 10, 29, 28, 49 | hpgerlem 25657 |
. . . 4
|
| 51 | 50 | ad2antrr 762 |
. . 3
|
| 52 | 48, 51 | r19.29a 3078 |
. 2
|
| 53 | 1, 3, 4, 5, 10, 11 | tglnpt2 25536 |
. 2
|
| 54 | 52, 53 | r19.29a 3078 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-xnn0 11364 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-hash 13118 df-word 13299 df-concat 13301 df-s1 13302 df-s2 13593 df-s3 13594 df-trkgc 25347 df-trkgb 25348 df-trkgcb 25349 df-trkgld 25351 df-trkg 25352 df-cgrg 25406 df-leg 25478 df-hlg 25496 df-mir 25548 df-rag 25589 df-perpg 25591 df-hpg 25650 |
| This theorem is referenced by: trgcopy 25696 |
| Copyright terms: Public domain | W3C validator |