MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnperpex Structured version   Visualization version   Unicode version

Theorem lnperpex 25695
Description: Existence of a perpendicular to a line  L at a given point  A. Theorem 10.15 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 2-Aug-2020.)
Hypotheses
Ref Expression
lmiopp.p  |-  P  =  ( Base `  G
)
lmiopp.m  |-  .-  =  ( dist `  G )
lmiopp.i  |-  I  =  (Itv `  G )
lmiopp.l  |-  L  =  (LineG `  G )
lmiopp.g  |-  ( ph  ->  G  e. TarskiG )
lmiopp.h  |-  ( ph  ->  GDimTarskiG 2 )
lmiopp.d  |-  ( ph  ->  D  e.  ran  L
)
lmiopp.o  |-  O  =  { <. a ,  b
>.  |  ( (
a  e.  ( P 
\  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  ( a I b ) ) }
lnperpex.a  |-  ( ph  ->  A  e.  D )
lnperpex.q  |-  ( ph  ->  Q  e.  P )
lnperpex.1  |-  ( ph  ->  -.  Q  e.  D
)
Assertion
Ref Expression
lnperpex  |-  ( ph  ->  E. p  e.  P  ( D (⟂G `  G
) ( p L A )  /\  p
( (hpG `  G
) `  D ) Q ) )
Distinct variable groups:    .- , a, b, p, t    A, a, b, p, t    D, a, b, p, t    G, a, b, p, t    I,
a, b, p, t    L, a, b, p, t    O, a, b, p, t    P, a, b, p, t    Q, a, b, p, t    ph, a, b, p, t

Proof of Theorem lnperpex
Dummy variables  c 
d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmiopp.p . . . . . 6  |-  P  =  ( Base `  G
)
2 lmiopp.m . . . . . 6  |-  .-  =  ( dist `  G )
3 lmiopp.i . . . . . 6  |-  I  =  (Itv `  G )
4 lmiopp.l . . . . . 6  |-  L  =  (LineG `  G )
5 lmiopp.g . . . . . . . . 9  |-  ( ph  ->  G  e. TarskiG )
65ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  D )  /\  A  =/=  d )  ->  G  e. TarskiG )
76ad2antrr 762 . . . . . . 7  |-  ( ( ( ( ( ph  /\  d  e.  D )  /\  A  =/=  d
)  /\  c  e.  P )  /\  Q O c )  ->  G  e. TarskiG )
87adantr 481 . . . . . 6  |-  ( ( ( ( ( (
ph  /\  d  e.  D )  /\  A  =/=  d )  /\  c  e.  P )  /\  Q O c )  /\  ( p  e.  P  /\  ( ( A L p ) (⟂G `  G
) D  /\  c O p ) ) )  ->  G  e. TarskiG )
9 simprl 794 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  d  e.  D )  /\  A  =/=  d )  /\  c  e.  P )  /\  Q O c )  /\  ( p  e.  P  /\  ( ( A L p ) (⟂G `  G
) D  /\  c O p ) ) )  ->  p  e.  P )
10 lmiopp.d . . . . . . . . . 10  |-  ( ph  ->  D  e.  ran  L
)
11 lnperpex.a . . . . . . . . . 10  |-  ( ph  ->  A  e.  D )
121, 4, 3, 5, 10, 11tglnpt 25444 . . . . . . . . 9  |-  ( ph  ->  A  e.  P )
1312ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  D )  /\  A  =/=  d )  ->  A  e.  P )
1413ad3antrrr 766 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  d  e.  D )  /\  A  =/=  d )  /\  c  e.  P )  /\  Q O c )  /\  ( p  e.  P  /\  ( ( A L p ) (⟂G `  G
) D  /\  c O p ) ) )  ->  A  e.  P )
15 simprrl 804 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  d  e.  D )  /\  A  =/=  d )  /\  c  e.  P )  /\  Q O c )  /\  ( p  e.  P  /\  ( ( A L p ) (⟂G `  G
) D  /\  c O p ) ) )  ->  ( A L p ) (⟂G `  G ) D )
164, 8, 15perpln1 25605 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  d  e.  D )  /\  A  =/=  d )  /\  c  e.  P )  /\  Q O c )  /\  ( p  e.  P  /\  ( ( A L p ) (⟂G `  G
) D  /\  c O p ) ) )  ->  ( A L p )  e. 
ran  L )
171, 3, 4, 8, 14, 9, 16tglnne 25523 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  d  e.  D )  /\  A  =/=  d )  /\  c  e.  P )  /\  Q O c )  /\  ( p  e.  P  /\  ( ( A L p ) (⟂G `  G
) D  /\  c O p ) ) )  ->  A  =/=  p )
1817necomd 2849 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  d  e.  D )  /\  A  =/=  d )  /\  c  e.  P )  /\  Q O c )  /\  ( p  e.  P  /\  ( ( A L p ) (⟂G `  G
) D  /\  c O p ) ) )  ->  p  =/=  A )
191, 3, 4, 8, 9, 14, 18tgelrnln 25525 . . . . . 6  |-  ( ( ( ( ( (
ph  /\  d  e.  D )  /\  A  =/=  d )  /\  c  e.  P )  /\  Q O c )  /\  ( p  e.  P  /\  ( ( A L p ) (⟂G `  G
) D  /\  c O p ) ) )  ->  ( p L A )  e.  ran  L )
2010ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  D )  /\  A  =/=  d )  ->  D  e.  ran  L )
2120ad2antrr 762 . . . . . . 7  |-  ( ( ( ( ( ph  /\  d  e.  D )  /\  A  =/=  d
)  /\  c  e.  P )  /\  Q O c )  ->  D  e.  ran  L )
2221adantr 481 . . . . . 6  |-  ( ( ( ( ( (
ph  /\  d  e.  D )  /\  A  =/=  d )  /\  c  e.  P )  /\  Q O c )  /\  ( p  e.  P  /\  ( ( A L p ) (⟂G `  G
) D  /\  c O p ) ) )  ->  D  e.  ran  L )
231, 3, 4, 8, 9, 14, 18tglinecom 25530 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  d  e.  D )  /\  A  =/=  d )  /\  c  e.  P )  /\  Q O c )  /\  ( p  e.  P  /\  ( ( A L p ) (⟂G `  G
) D  /\  c O p ) ) )  ->  ( p L A )  =  ( A L p ) )
2423, 15eqbrtrd 4675 . . . . . 6  |-  ( ( ( ( ( (
ph  /\  d  e.  D )  /\  A  =/=  d )  /\  c  e.  P )  /\  Q O c )  /\  ( p  e.  P  /\  ( ( A L p ) (⟂G `  G
) D  /\  c O p ) ) )  ->  ( p L A ) (⟂G `  G
) D )
251, 2, 3, 4, 8, 19, 22, 24perpcom 25608 . . . . 5  |-  ( ( ( ( ( (
ph  /\  d  e.  D )  /\  A  =/=  d )  /\  c  e.  P )  /\  Q O c )  /\  ( p  e.  P  /\  ( ( A L p ) (⟂G `  G
) D  /\  c O p ) ) )  ->  D (⟂G `  G ) ( p L A ) )
26 simpr 477 . . . . . . 7  |-  ( ( ( ( ( ph  /\  d  e.  D )  /\  A  =/=  d
)  /\  c  e.  P )  /\  Q O c )  ->  Q O c )
2726adantr 481 . . . . . 6  |-  ( ( ( ( ( (
ph  /\  d  e.  D )  /\  A  =/=  d )  /\  c  e.  P )  /\  Q O c )  /\  ( p  e.  P  /\  ( ( A L p ) (⟂G `  G
) D  /\  c O p ) ) )  ->  Q O
c )
28 lmiopp.o . . . . . . 7  |-  O  =  { <. a ,  b
>.  |  ( (
a  e.  ( P 
\  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  ( a I b ) ) }
29 lnperpex.q . . . . . . . . . 10  |-  ( ph  ->  Q  e.  P )
3029ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  D )  /\  A  =/=  d )  ->  Q  e.  P )
3130ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  d  e.  D )  /\  A  =/=  d
)  /\  c  e.  P )  /\  Q O c )  ->  Q  e.  P )
3231adantr 481 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  d  e.  D )  /\  A  =/=  d )  /\  c  e.  P )  /\  Q O c )  /\  ( p  e.  P  /\  ( ( A L p ) (⟂G `  G
) D  /\  c O p ) ) )  ->  Q  e.  P )
33 simplr 792 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  d  e.  D )  /\  A  =/=  d
)  /\  c  e.  P )  /\  Q O c )  -> 
c  e.  P )
3433adantr 481 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  d  e.  D )  /\  A  =/=  d )  /\  c  e.  P )  /\  Q O c )  /\  ( p  e.  P  /\  ( ( A L p ) (⟂G `  G
) D  /\  c O p ) ) )  ->  c  e.  P )
35 simprrr 805 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  d  e.  D )  /\  A  =/=  d )  /\  c  e.  P )  /\  Q O c )  /\  ( p  e.  P  /\  ( ( A L p ) (⟂G `  G
) D  /\  c O p ) ) )  ->  c O p )
361, 2, 3, 28, 4, 22, 8, 34, 9, 35oppcom 25636 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  d  e.  D )  /\  A  =/=  d )  /\  c  e.  P )  /\  Q O c )  /\  ( p  e.  P  /\  ( ( A L p ) (⟂G `  G
) D  /\  c O p ) ) )  ->  p O
c )
371, 3, 4, 28, 8, 22, 9, 32, 34, 36lnopp2hpgb 25655 . . . . . 6  |-  ( ( ( ( ( (
ph  /\  d  e.  D )  /\  A  =/=  d )  /\  c  e.  P )  /\  Q O c )  /\  ( p  e.  P  /\  ( ( A L p ) (⟂G `  G
) D  /\  c O p ) ) )  ->  ( Q O c  <->  p (
(hpG `  G ) `  D ) Q ) )
3827, 37mpbid 222 . . . . 5  |-  ( ( ( ( ( (
ph  /\  d  e.  D )  /\  A  =/=  d )  /\  c  e.  P )  /\  Q O c )  /\  ( p  e.  P  /\  ( ( A L p ) (⟂G `  G
) D  /\  c O p ) ) )  ->  p (
(hpG `  G ) `  D ) Q )
3925, 38jca 554 . . . 4  |-  ( ( ( ( ( (
ph  /\  d  e.  D )  /\  A  =/=  d )  /\  c  e.  P )  /\  Q O c )  /\  ( p  e.  P  /\  ( ( A L p ) (⟂G `  G
) D  /\  c O p ) ) )  ->  ( D
(⟂G `  G ) ( p L A )  /\  p ( (hpG
`  G ) `  D ) Q ) )
40 eqid 2622 . . . . 5  |-  (hlG `  G )  =  (hlG
`  G )
4111ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  d  e.  D )  /\  A  =/=  d )  ->  A  e.  D )
4241ad2antrr 762 . . . . 5  |-  ( ( ( ( ( ph  /\  d  e.  D )  /\  A  =/=  d
)  /\  c  e.  P )  /\  Q O c )  ->  A  e.  D )
431, 2, 3, 28, 4, 21, 7, 31, 33, 26oppne2 25634 . . . . 5  |-  ( ( ( ( ( ph  /\  d  e.  D )  /\  A  =/=  d
)  /\  c  e.  P )  /\  Q O c )  ->  -.  c  e.  D
)
44 lmiopp.h . . . . . . 7  |-  ( ph  ->  GDimTarskiG 2 )
4544ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  d  e.  D )  /\  A  =/=  d )  ->  GDimTarskiG 2
)
4645ad2antrr 762 . . . . 5  |-  ( ( ( ( ( ph  /\  d  e.  D )  /\  A  =/=  d
)  /\  c  e.  P )  /\  Q O c )  ->  GDimTarskiG 2 )
471, 2, 3, 28, 4, 21, 7, 40, 42, 33, 43, 46oppperpex 25645 . . . 4  |-  ( ( ( ( ( ph  /\  d  e.  D )  /\  A  =/=  d
)  /\  c  e.  P )  /\  Q O c )  ->  E. p  e.  P  ( ( A L p ) (⟂G `  G
) D  /\  c O p ) )
4839, 47reximddv 3018 . . 3  |-  ( ( ( ( ( ph  /\  d  e.  D )  /\  A  =/=  d
)  /\  c  e.  P )  /\  Q O c )  ->  E. p  e.  P  ( D (⟂G `  G
) ( p L A )  /\  p
( (hpG `  G
) `  D ) Q ) )
49 lnperpex.1 . . . . 5  |-  ( ph  ->  -.  Q  e.  D
)
501, 3, 4, 5, 10, 29, 28, 49hpgerlem 25657 . . . 4  |-  ( ph  ->  E. c  e.  P  Q O c )
5150ad2antrr 762 . . 3  |-  ( ( ( ph  /\  d  e.  D )  /\  A  =/=  d )  ->  E. c  e.  P  Q O
c )
5248, 51r19.29a 3078 . 2  |-  ( ( ( ph  /\  d  e.  D )  /\  A  =/=  d )  ->  E. p  e.  P  ( D
(⟂G `  G ) ( p L A )  /\  p ( (hpG
`  G ) `  D ) Q ) )
531, 3, 4, 5, 10, 11tglnpt2 25536 . 2  |-  ( ph  ->  E. d  e.  D  A  =/=  d )
5452, 53r19.29a 3078 1  |-  ( ph  ->  E. p  e.  P  ( D (⟂G `  G
) ( p L A )  /\  p
( (hpG `  G
) `  D ) Q ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    \ cdif 3571   class class class wbr 4653   {copab 4712   ran crn 5115   ` cfv 5888  (class class class)co 6650   2c2 11070   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  DimTarskiGcstrkgld 25333  Itvcitv 25335  LineGclng 25336  hlGchlg 25495  ⟂Gcperpg 25590  hpGchpg 25649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkgld 25351  df-trkg 25352  df-cgrg 25406  df-leg 25478  df-hlg 25496  df-mir 25548  df-rag 25589  df-perpg 25591  df-hpg 25650
This theorem is referenced by:  trgcopy  25696
  Copyright terms: Public domain W3C validator