MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opphllem1 Structured version   Visualization version   Unicode version

Theorem opphllem1 25639
Description: Lemma for opphl 25646. (Contributed by Thierry Arnoux, 20-Dec-2019.)
Hypotheses
Ref Expression
hpg.p  |-  P  =  ( Base `  G
)
hpg.d  |-  .-  =  ( dist `  G )
hpg.i  |-  I  =  (Itv `  G )
hpg.o  |-  O  =  { <. a ,  b
>.  |  ( (
a  e.  ( P 
\  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  ( a I b ) ) }
opphl.l  |-  L  =  (LineG `  G )
opphl.d  |-  ( ph  ->  D  e.  ran  L
)
opphl.g  |-  ( ph  ->  G  e. TarskiG )
opphllem1.s  |-  S  =  ( (pInvG `  G
) `  M )
opphllem1.a  |-  ( ph  ->  A  e.  P )
opphllem1.b  |-  ( ph  ->  B  e.  P )
opphllem1.c  |-  ( ph  ->  C  e.  P )
opphllem1.r  |-  ( ph  ->  R  e.  D )
opphllem1.o  |-  ( ph  ->  A O C )
opphllem1.m  |-  ( ph  ->  M  e.  D )
opphllem1.n  |-  ( ph  ->  A  =  ( S `
 C ) )
opphllem1.x  |-  ( ph  ->  A  =/=  R )
opphllem1.y  |-  ( ph  ->  B  =/=  R )
opphllem1.z  |-  ( ph  ->  B  e.  ( R I A ) )
Assertion
Ref Expression
opphllem1  |-  ( ph  ->  B O C )
Distinct variable groups:    D, a,
b    I, a, b    P, a, b    t, A    t, B    t, D    t, R    t, C    t, G    t, L    t, I    t, M   
t, O    t, P    t, S    ph, t    t,  .-    t, a, b
Allowed substitution hints:    ph( a, b)    A( a, b)    B( a, b)    C( a, b)    R( a, b)    S( a, b)    G( a, b)    L( a, b)    M( a, b)    .- ( a,
b)    O( a, b)

Proof of Theorem opphllem1
StepHypRef Expression
1 simpr 477 . . . . . 6  |-  ( ( ( ph  /\  B  e.  D )  /\  A  =  B )  ->  A  =  B )
2 simplr 792 . . . . . 6  |-  ( ( ( ph  /\  B  e.  D )  /\  A  =  B )  ->  B  e.  D )
31, 2eqeltrd 2701 . . . . 5  |-  ( ( ( ph  /\  B  e.  D )  /\  A  =  B )  ->  A  e.  D )
4 hpg.p . . . . . . 7  |-  P  =  ( Base `  G
)
5 hpg.i . . . . . . 7  |-  I  =  (Itv `  G )
6 opphl.l . . . . . . 7  |-  L  =  (LineG `  G )
7 opphl.g . . . . . . . 8  |-  ( ph  ->  G  e. TarskiG )
87ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  B  e.  D )  /\  A  =/=  B )  ->  G  e. TarskiG )
9 opphllem1.b . . . . . . . 8  |-  ( ph  ->  B  e.  P )
109ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  B  e.  D )  /\  A  =/=  B )  ->  B  e.  P )
11 opphl.d . . . . . . . . 9  |-  ( ph  ->  D  e.  ran  L
)
12 opphllem1.r . . . . . . . . 9  |-  ( ph  ->  R  e.  D )
134, 6, 5, 7, 11, 12tglnpt 25444 . . . . . . . 8  |-  ( ph  ->  R  e.  P )
1413ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  B  e.  D )  /\  A  =/=  B )  ->  R  e.  P )
15 opphllem1.a . . . . . . . 8  |-  ( ph  ->  A  e.  P )
1615ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  B  e.  D )  /\  A  =/=  B )  ->  A  e.  P )
17 opphllem1.y . . . . . . . 8  |-  ( ph  ->  B  =/=  R )
1817ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  B  e.  D )  /\  A  =/=  B )  ->  B  =/=  R )
1918necomd 2849 . . . . . . . 8  |-  ( ( ( ph  /\  B  e.  D )  /\  A  =/=  B )  ->  R  =/=  B )
20 opphllem1.z . . . . . . . . 9  |-  ( ph  ->  B  e.  ( R I A ) )
2120ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  B  e.  D )  /\  A  =/=  B )  ->  B  e.  ( R I A ) )
224, 5, 6, 8, 14, 10, 16, 19, 21btwnlng3 25516 . . . . . . 7  |-  ( ( ( ph  /\  B  e.  D )  /\  A  =/=  B )  ->  A  e.  ( R L B ) )
234, 5, 6, 8, 10, 14, 16, 18, 22lncom 25517 . . . . . 6  |-  ( ( ( ph  /\  B  e.  D )  /\  A  =/=  B )  ->  A  e.  ( B L R ) )
2411ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  B  e.  D )  /\  A  =/=  B )  ->  D  e.  ran  L )
25 simplr 792 . . . . . . 7  |-  ( ( ( ph  /\  B  e.  D )  /\  A  =/=  B )  ->  B  e.  D )
2612ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  B  e.  D )  /\  A  =/=  B )  ->  R  e.  D )
274, 5, 6, 8, 10, 14, 18, 18, 24, 25, 26tglinethru 25531 . . . . . 6  |-  ( ( ( ph  /\  B  e.  D )  /\  A  =/=  B )  ->  D  =  ( B L R ) )
2823, 27eleqtrrd 2704 . . . . 5  |-  ( ( ( ph  /\  B  e.  D )  /\  A  =/=  B )  ->  A  e.  D )
293, 28pm2.61dane 2881 . . . 4  |-  ( (
ph  /\  B  e.  D )  ->  A  e.  D )
30 hpg.d . . . . . 6  |-  .-  =  ( dist `  G )
31 hpg.o . . . . . 6  |-  O  =  { <. a ,  b
>.  |  ( (
a  e.  ( P 
\  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  ( a I b ) ) }
32 opphllem1.c . . . . . 6  |-  ( ph  ->  C  e.  P )
33 opphllem1.o . . . . . 6  |-  ( ph  ->  A O C )
344, 30, 5, 31, 6, 11, 7, 15, 32, 33oppne1 25633 . . . . 5  |-  ( ph  ->  -.  A  e.  D
)
3534adantr 481 . . . 4  |-  ( (
ph  /\  B  e.  D )  ->  -.  A  e.  D )
3629, 35pm2.65da 600 . . 3  |-  ( ph  ->  -.  B  e.  D
)
374, 30, 5, 31, 6, 11, 7, 15, 32, 33oppne2 25634 . . 3  |-  ( ph  ->  -.  C  e.  D
)
38 opphllem1.m . . . . . 6  |-  ( ph  ->  M  e.  D )
394, 6, 5, 7, 11, 38tglnpt 25444 . . . . 5  |-  ( ph  ->  M  e.  P )
40 eqid 2622 . . . . . . 7  |-  (pInvG `  G )  =  (pInvG `  G )
41 opphllem1.s . . . . . . 7  |-  S  =  ( (pInvG `  G
) `  M )
424, 30, 5, 6, 40, 7, 39, 41, 15mirbtwn 25553 . . . . . 6  |-  ( ph  ->  M  e.  ( ( S `  A ) I A ) )
43 opphllem1.n . . . . . . . . 9  |-  ( ph  ->  A  =  ( S `
 C ) )
4443eqcomd 2628 . . . . . . . 8  |-  ( ph  ->  ( S `  C
)  =  A )
454, 30, 5, 6, 40, 7, 39, 41, 32, 44mircom 25558 . . . . . . 7  |-  ( ph  ->  ( S `  A
)  =  C )
4645oveq1d 6665 . . . . . 6  |-  ( ph  ->  ( ( S `  A ) I A )  =  ( C I A ) )
4742, 46eleqtrd 2703 . . . . 5  |-  ( ph  ->  M  e.  ( C I A ) )
484, 30, 5, 7, 13, 32, 15, 9, 39, 20, 47axtgpasch 25366 . . . 4  |-  ( ph  ->  E. t  e.  P  ( t  e.  ( B I C )  /\  t  e.  ( M I R ) ) )
497ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
t  e.  P  /\  ( t  e.  ( B I C )  /\  t  e.  ( M I R ) ) ) )  /\  M  =  R )  ->  G  e. TarskiG )
5013ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
t  e.  P  /\  ( t  e.  ( B I C )  /\  t  e.  ( M I R ) ) ) )  /\  M  =  R )  ->  R  e.  P )
51 simplrl 800 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
t  e.  P  /\  ( t  e.  ( B I C )  /\  t  e.  ( M I R ) ) ) )  /\  M  =  R )  ->  t  e.  P )
52 simplrr 801 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
t  e.  P  /\  ( t  e.  ( B I C )  /\  t  e.  ( M I R ) ) ) )  /\  M  =  R )  ->  ( t  e.  ( B I C )  /\  t  e.  ( M I R ) ) )
5352simprd 479 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
t  e.  P  /\  ( t  e.  ( B I C )  /\  t  e.  ( M I R ) ) ) )  /\  M  =  R )  ->  t  e.  ( M I R ) )
54 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
t  e.  P  /\  ( t  e.  ( B I C )  /\  t  e.  ( M I R ) ) ) )  /\  M  =  R )  ->  M  =  R )
5554oveq1d 6665 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
t  e.  P  /\  ( t  e.  ( B I C )  /\  t  e.  ( M I R ) ) ) )  /\  M  =  R )  ->  ( M I R )  =  ( R I R ) )
5653, 55eleqtrd 2703 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
t  e.  P  /\  ( t  e.  ( B I C )  /\  t  e.  ( M I R ) ) ) )  /\  M  =  R )  ->  t  e.  ( R I R ) )
574, 30, 5, 49, 50, 51, 56axtgbtwnid 25365 . . . . . . . . 9  |-  ( ( ( ph  /\  (
t  e.  P  /\  ( t  e.  ( B I C )  /\  t  e.  ( M I R ) ) ) )  /\  M  =  R )  ->  R  =  t )
5812ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  (
t  e.  P  /\  ( t  e.  ( B I C )  /\  t  e.  ( M I R ) ) ) )  /\  M  =  R )  ->  R  e.  D )
5957, 58eqeltrrd 2702 . . . . . . . 8  |-  ( ( ( ph  /\  (
t  e.  P  /\  ( t  e.  ( B I C )  /\  t  e.  ( M I R ) ) ) )  /\  M  =  R )  ->  t  e.  D )
607adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  M  =/=  R )  ->  G  e. TarskiG )
6160adantlr 751 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
t  e.  P  /\  ( t  e.  ( B I C )  /\  t  e.  ( M I R ) ) ) )  /\  M  =/=  R )  ->  G  e. TarskiG )
6239adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  M  =/=  R )  ->  M  e.  P )
6362adantlr 751 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
t  e.  P  /\  ( t  e.  ( B I C )  /\  t  e.  ( M I R ) ) ) )  /\  M  =/=  R )  ->  M  e.  P )
6413adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  M  =/=  R )  ->  R  e.  P )
6564adantlr 751 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
t  e.  P  /\  ( t  e.  ( B I C )  /\  t  e.  ( M I R ) ) ) )  /\  M  =/=  R )  ->  R  e.  P )
66 simplrl 800 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
t  e.  P  /\  ( t  e.  ( B I C )  /\  t  e.  ( M I R ) ) ) )  /\  M  =/=  R )  -> 
t  e.  P )
67 simpr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
t  e.  P  /\  ( t  e.  ( B I C )  /\  t  e.  ( M I R ) ) ) )  /\  M  =/=  R )  ->  M  =/=  R )
68 simplrr 801 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
t  e.  P  /\  ( t  e.  ( B I C )  /\  t  e.  ( M I R ) ) ) )  /\  M  =/=  R )  -> 
( t  e.  ( B I C )  /\  t  e.  ( M I R ) ) )
6968simprd 479 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
t  e.  P  /\  ( t  e.  ( B I C )  /\  t  e.  ( M I R ) ) ) )  /\  M  =/=  R )  -> 
t  e.  ( M I R ) )
704, 5, 6, 61, 63, 65, 66, 67, 69btwnlng1 25514 . . . . . . . . 9  |-  ( ( ( ph  /\  (
t  e.  P  /\  ( t  e.  ( B I C )  /\  t  e.  ( M I R ) ) ) )  /\  M  =/=  R )  -> 
t  e.  ( M L R ) )
71 simpr 477 . . . . . . . . . . 11  |-  ( (
ph  /\  M  =/=  R )  ->  M  =/=  R )
7211adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  M  =/=  R )  ->  D  e.  ran  L )
7338adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  M  =/=  R )  ->  M  e.  D )
7412adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  M  =/=  R )  ->  R  e.  D )
754, 5, 6, 60, 62, 64, 71, 71, 72, 73, 74tglinethru 25531 . . . . . . . . . 10  |-  ( (
ph  /\  M  =/=  R )  ->  D  =  ( M L R ) )
7675adantlr 751 . . . . . . . . 9  |-  ( ( ( ph  /\  (
t  e.  P  /\  ( t  e.  ( B I C )  /\  t  e.  ( M I R ) ) ) )  /\  M  =/=  R )  ->  D  =  ( M L R ) )
7770, 76eleqtrrd 2704 . . . . . . . 8  |-  ( ( ( ph  /\  (
t  e.  P  /\  ( t  e.  ( B I C )  /\  t  e.  ( M I R ) ) ) )  /\  M  =/=  R )  -> 
t  e.  D )
7859, 77pm2.61dane 2881 . . . . . . 7  |-  ( (
ph  /\  ( t  e.  P  /\  (
t  e.  ( B I C )  /\  t  e.  ( M I R ) ) ) )  ->  t  e.  D )
79 simprrl 804 . . . . . . 7  |-  ( (
ph  /\  ( t  e.  P  /\  (
t  e.  ( B I C )  /\  t  e.  ( M I R ) ) ) )  ->  t  e.  ( B I C ) )
8078, 79jca 554 . . . . . 6  |-  ( (
ph  /\  ( t  e.  P  /\  (
t  e.  ( B I C )  /\  t  e.  ( M I R ) ) ) )  ->  ( t  e.  D  /\  t  e.  ( B I C ) ) )
8180ex 450 . . . . 5  |-  ( ph  ->  ( ( t  e.  P  /\  ( t  e.  ( B I C )  /\  t  e.  ( M I R ) ) )  -> 
( t  e.  D  /\  t  e.  ( B I C ) ) ) )
8281reximdv2 3014 . . . 4  |-  ( ph  ->  ( E. t  e.  P  ( t  e.  ( B I C )  /\  t  e.  ( M I R ) )  ->  E. t  e.  D  t  e.  ( B I C ) ) )
8348, 82mpd 15 . . 3  |-  ( ph  ->  E. t  e.  D  t  e.  ( B I C ) )
8436, 37, 83jca31 557 . 2  |-  ( ph  ->  ( ( -.  B  e.  D  /\  -.  C  e.  D )  /\  E. t  e.  D  t  e.  ( B I C ) ) )
854, 30, 5, 31, 9, 32islnopp 25631 . 2  |-  ( ph  ->  ( B O C  <-> 
( ( -.  B  e.  D  /\  -.  C  e.  D )  /\  E. t  e.  D  t  e.  ( B I C ) ) ) )
8684, 85mpbird 247 1  |-  ( ph  ->  B O C )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    \ cdif 3571   class class class wbr 4653   {copab 4712   ran crn 5115   ` cfv 5888  (class class class)co 6650   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  pInvGcmir 25547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-cgrg 25406  df-mir 25548
This theorem is referenced by:  opphllem2  25640
  Copyright terms: Public domain W3C validator