Proof of Theorem opphllem1
Step | Hyp | Ref
| Expression |
1 | | simpr 477 |
. . . . . 6
       |
2 | | simplr 792 |
. . . . . 6
       |
3 | 1, 2 | eqeltrd 2701 |
. . . . 5
       |
4 | | hpg.p |
. . . . . . 7
     |
5 | | hpg.i |
. . . . . . 7
Itv   |
6 | | opphl.l |
. . . . . . 7
LineG   |
7 | | opphl.g |
. . . . . . . 8

TarskiG |
8 | 7 | ad2antrr 762 |
. . . . . . 7
     TarskiG |
9 | | opphllem1.b |
. . . . . . . 8
   |
10 | 9 | ad2antrr 762 |
. . . . . . 7
       |
11 | | opphl.d |
. . . . . . . . 9
   |
12 | | opphllem1.r |
. . . . . . . . 9
   |
13 | 4, 6, 5, 7, 11, 12 | tglnpt 25444 |
. . . . . . . 8
   |
14 | 13 | ad2antrr 762 |
. . . . . . 7
       |
15 | | opphllem1.a |
. . . . . . . 8
   |
16 | 15 | ad2antrr 762 |
. . . . . . 7
       |
17 | | opphllem1.y |
. . . . . . . 8
   |
18 | 17 | ad2antrr 762 |
. . . . . . 7
       |
19 | 18 | necomd 2849 |
. . . . . . . 8
       |
20 | | opphllem1.z |
. . . . . . . . 9
       |
21 | 20 | ad2antrr 762 |
. . . . . . . 8
           |
22 | 4, 5, 6, 8, 14, 10, 16, 19, 21 | btwnlng3 25516 |
. . . . . . 7
           |
23 | 4, 5, 6, 8, 10, 14, 16, 18, 22 | lncom 25517 |
. . . . . 6
           |
24 | 11 | ad2antrr 762 |
. . . . . . 7
       |
25 | | simplr 792 |
. . . . . . 7
       |
26 | 12 | ad2antrr 762 |
. . . . . . 7
       |
27 | 4, 5, 6, 8, 10, 14, 18, 18, 24, 25, 26 | tglinethru 25531 |
. . . . . 6
           |
28 | 23, 27 | eleqtrrd 2704 |
. . . . 5
       |
29 | 3, 28 | pm2.61dane 2881 |
. . . 4
 
   |
30 | | hpg.d |
. . . . . 6
     |
31 | | hpg.o |
. . . . . 6
   
   
           |
32 | | opphllem1.c |
. . . . . 6
   |
33 | | opphllem1.o |
. . . . . 6
     |
34 | 4, 30, 5, 31, 6, 11, 7, 15, 32, 33 | oppne1 25633 |
. . . . 5
   |
35 | 34 | adantr 481 |
. . . 4
 

  |
36 | 29, 35 | pm2.65da 600 |
. . 3
   |
37 | 4, 30, 5, 31, 6, 11, 7, 15, 32, 33 | oppne2 25634 |
. . 3
   |
38 | | opphllem1.m |
. . . . . 6
   |
39 | 4, 6, 5, 7, 11, 38 | tglnpt 25444 |
. . . . 5
   |
40 | | eqid 2622 |
. . . . . . 7
pInvG  pInvG   |
41 | | opphllem1.s |
. . . . . . 7
 pInvG      |
42 | 4, 30, 5, 6, 40, 7,
39, 41, 15 | mirbtwn 25553 |
. . . . . 6
           |
43 | | opphllem1.n |
. . . . . . . . 9
       |
44 | 43 | eqcomd 2628 |
. . . . . . . 8
       |
45 | 4, 30, 5, 6, 40, 7,
39, 41, 32, 44 | mircom 25558 |
. . . . . . 7
       |
46 | 45 | oveq1d 6665 |
. . . . . 6
               |
47 | 42, 46 | eleqtrd 2703 |
. . . . 5
       |
48 | 4, 30, 5, 7, 13, 32, 15, 9, 39, 20, 47 | axtgpasch 25366 |
. . . 4
              |
49 | 7 | ad2antrr 762 |
. . . . . . . . . 10
               

TarskiG |
50 | 13 | ad2antrr 762 |
. . . . . . . . . 10
               
   |
51 | | simplrl 800 |
. . . . . . . . . 10
               
   |
52 | | simplrr 801 |
. . . . . . . . . . . 12
               
             |
53 | 52 | simprd 479 |
. . . . . . . . . . 11
               
       |
54 | | simpr 477 |
. . . . . . . . . . . 12
               
   |
55 | 54 | oveq1d 6665 |
. . . . . . . . . . 11
               
           |
56 | 53, 55 | eleqtrd 2703 |
. . . . . . . . . 10
               
       |
57 | 4, 30, 5, 49, 50, 51, 56 | axtgbtwnid 25365 |
. . . . . . . . 9
               
   |
58 | 12 | ad2antrr 762 |
. . . . . . . . 9
               
   |
59 | 57, 58 | eqeltrrd 2702 |
. . . . . . . 8
               
   |
60 | 7 | adantr 481 |
. . . . . . . . . . 11
 

TarskiG |
61 | 60 | adantlr 751 |
. . . . . . . . . 10
                
TarskiG |
62 | 39 | adantr 481 |
. . . . . . . . . . 11
 

  |
63 | 62 | adantlr 751 |
. . . . . . . . . 10
                
  |
64 | 13 | adantr 481 |
. . . . . . . . . . 11
 

  |
65 | 64 | adantlr 751 |
. . . . . . . . . 10
                
  |
66 | | simplrl 800 |
. . . . . . . . . 10
                   |
67 | | simpr 477 |
. . . . . . . . . 10
                   |
68 | | simplrr 801 |
. . . . . . . . . . 11
                             |
69 | 68 | simprd 479 |
. . . . . . . . . 10
                       |
70 | 4, 5, 6, 61, 63, 65, 66, 67, 69 | btwnlng1 25514 |
. . . . . . . . 9
                       |
71 | | simpr 477 |
. . . . . . . . . . 11
 

  |
72 | 11 | adantr 481 |
. . . . . . . . . . 11
 

  |
73 | 38 | adantr 481 |
. . . . . . . . . . 11
 

  |
74 | 12 | adantr 481 |
. . . . . . . . . . 11
 

  |
75 | 4, 5, 6, 60, 62, 64, 71, 71, 72, 73, 74 | tglinethru 25531 |
. . . . . . . . . 10
 

      |
76 | 75 | adantlr 751 |
. . . . . . . . 9
                
      |
77 | 70, 76 | eleqtrrd 2704 |
. . . . . . . 8
                   |
78 | 59, 77 | pm2.61dane 2881 |
. . . . . . 7
 

    
      
  |
79 | | simprrl 804 |
. . . . . . 7
 

    
      
      |
80 | 78, 79 | jca 554 |
. . . . . 6
 

    
      

       |
81 | 80 | ex 450 |
. . . . 5
              
        |
82 | 81 | reximdv2 3014 |
. . . 4
             
       |
83 | 48, 82 | mpd 15 |
. . 3
 
      |
84 | 36, 37, 83 | jca31 557 |
. 2
  
 
       |
85 | 4, 30, 5, 31, 9, 32 | islnopp 25631 |
. 2
     
 
        |
86 | 84, 85 | mpbird 247 |
1
     |