MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phplem4 Structured version   Visualization version   Unicode version

Theorem phplem4 8142
Description: Lemma for Pigeonhole Principle. Equinumerosity of successors implies equinumerosity of the original natural numbers. (Contributed by NM, 28-May-1998.) (Revised by Mario Carneiro, 24-Jun-2015.)
Hypotheses
Ref Expression
phplem2.1  |-  A  e. 
_V
phplem2.2  |-  B  e. 
_V
Assertion
Ref Expression
phplem4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  ~~  suc  B  ->  A  ~~  B ) )

Proof of Theorem phplem4
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 bren 7964 . 2  |-  ( suc 
A  ~~  suc  B  <->  E. f 
f : suc  A -1-1-onto-> suc  B )
2 f1of1 6136 . . . . . . . . . 10  |-  ( f : suc  A -1-1-onto-> suc  B  ->  f : suc  A -1-1-> suc 
B )
32adantl 482 . . . . . . . . 9  |-  ( ( A  e.  om  /\  f : suc  A -1-1-onto-> suc  B
)  ->  f : suc  A -1-1-> suc  B )
4 phplem2.2 . . . . . . . . . 10  |-  B  e. 
_V
54sucex 7011 . . . . . . . . 9  |-  suc  B  e.  _V
6 sssucid 5802 . . . . . . . . . 10  |-  A  C_  suc  A
7 phplem2.1 . . . . . . . . . 10  |-  A  e. 
_V
8 f1imaen2g 8017 . . . . . . . . . 10  |-  ( ( ( f : suc  A
-1-1-> suc  B  /\  suc  B  e.  _V )  /\  ( A  C_  suc  A  /\  A  e.  _V ) )  ->  (
f " A ) 
~~  A )
96, 7, 8mpanr12 721 . . . . . . . . 9  |-  ( ( f : suc  A -1-1-> suc 
B  /\  suc  B  e. 
_V )  ->  (
f " A ) 
~~  A )
103, 5, 9sylancl 694 . . . . . . . 8  |-  ( ( A  e.  om  /\  f : suc  A -1-1-onto-> suc  B
)  ->  ( f " A )  ~~  A
)
1110ensymd 8007 . . . . . . 7  |-  ( ( A  e.  om  /\  f : suc  A -1-1-onto-> suc  B
)  ->  A  ~~  ( f " A
) )
12 nnord 7073 . . . . . . . . . 10  |-  ( A  e.  om  ->  Ord  A )
13 orddif 5820 . . . . . . . . . 10  |-  ( Ord 
A  ->  A  =  ( suc  A  \  { A } ) )
1412, 13syl 17 . . . . . . . . 9  |-  ( A  e.  om  ->  A  =  ( suc  A  \  { A } ) )
1514imaeq2d 5466 . . . . . . . 8  |-  ( A  e.  om  ->  (
f " A )  =  ( f "
( suc  A  \  { A } ) ) )
16 f1ofn 6138 . . . . . . . . . . 11  |-  ( f : suc  A -1-1-onto-> suc  B  ->  f  Fn  suc  A
)
177sucid 5804 . . . . . . . . . . 11  |-  A  e. 
suc  A
18 fnsnfv 6258 . . . . . . . . . . 11  |-  ( ( f  Fn  suc  A  /\  A  e.  suc  A )  ->  { (
f `  A ) }  =  ( f " { A } ) )
1916, 17, 18sylancl 694 . . . . . . . . . 10  |-  ( f : suc  A -1-1-onto-> suc  B  ->  { ( f `  A ) }  =  ( f " { A } ) )
2019difeq2d 3728 . . . . . . . . 9  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( ( f " suc  A )  \  {
( f `  A
) } )  =  ( ( f " suc  A )  \  (
f " { A } ) ) )
21 imadmrn 5476 . . . . . . . . . . . 12  |-  ( f
" dom  f )  =  ran  f
2221eqcomi 2631 . . . . . . . . . . 11  |-  ran  f  =  ( f " dom  f )
23 f1ofo 6144 . . . . . . . . . . . 12  |-  ( f : suc  A -1-1-onto-> suc  B  ->  f : suc  A -onto-> suc  B )
24 forn 6118 . . . . . . . . . . . 12  |-  ( f : suc  A -onto-> suc  B  ->  ran  f  =  suc  B )
2523, 24syl 17 . . . . . . . . . . 11  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ran  f  =  suc  B )
26 f1odm 6141 . . . . . . . . . . . 12  |-  ( f : suc  A -1-1-onto-> suc  B  ->  dom  f  =  suc  A )
2726imaeq2d 5466 . . . . . . . . . . 11  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( f " dom  f )  =  ( f " suc  A
) )
2822, 25, 273eqtr3a 2680 . . . . . . . . . 10  |-  ( f : suc  A -1-1-onto-> suc  B  ->  suc  B  =  ( f " suc  A
) )
2928difeq1d 3727 . . . . . . . . 9  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( suc  B  \  { ( f `  A ) } )  =  ( ( f
" suc  A )  \  { ( f `  A ) } ) )
30 dff1o3 6143 . . . . . . . . . . 11  |-  ( f : suc  A -1-1-onto-> suc  B  <->  ( f : suc  A -onto-> suc  B  /\  Fun  `' f ) )
3130simprbi 480 . . . . . . . . . 10  |-  ( f : suc  A -1-1-onto-> suc  B  ->  Fun  `' f )
32 imadif 5973 . . . . . . . . . 10  |-  ( Fun  `' f  ->  ( f
" ( suc  A  \  { A } ) )  =  ( ( f " suc  A
)  \  ( f " { A } ) ) )
3331, 32syl 17 . . . . . . . . 9  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( f " ( suc  A  \  { A } ) )  =  ( ( f " suc  A )  \  (
f " { A } ) ) )
3420, 29, 333eqtr4rd 2667 . . . . . . . 8  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( f " ( suc  A  \  { A } ) )  =  ( suc  B  \  { ( f `  A ) } ) )
3515, 34sylan9eq 2676 . . . . . . 7  |-  ( ( A  e.  om  /\  f : suc  A -1-1-onto-> suc  B
)  ->  ( f " A )  =  ( suc  B  \  {
( f `  A
) } ) )
3611, 35breqtrd 4679 . . . . . 6  |-  ( ( A  e.  om  /\  f : suc  A -1-1-onto-> suc  B
)  ->  A  ~~  ( suc  B  \  {
( f `  A
) } ) )
37 fnfvelrn 6356 . . . . . . . . . 10  |-  ( ( f  Fn  suc  A  /\  A  e.  suc  A )  ->  ( f `  A )  e.  ran  f )
3816, 17, 37sylancl 694 . . . . . . . . 9  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( f `  A
)  e.  ran  f
)
3924eleq2d 2687 . . . . . . . . . 10  |-  ( f : suc  A -onto-> suc  B  ->  ( ( f `
 A )  e. 
ran  f  <->  ( f `  A )  e.  suc  B ) )
4023, 39syl 17 . . . . . . . . 9  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( ( f `  A )  e.  ran  f 
<->  ( f `  A
)  e.  suc  B
) )
4138, 40mpbid 222 . . . . . . . 8  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( f `  A
)  e.  suc  B
)
42 fvex 6201 . . . . . . . . 9  |-  ( f `
 A )  e. 
_V
434, 42phplem3 8141 . . . . . . . 8  |-  ( ( B  e.  om  /\  ( f `  A
)  e.  suc  B
)  ->  B  ~~  ( suc  B  \  {
( f `  A
) } ) )
4441, 43sylan2 491 . . . . . . 7  |-  ( ( B  e.  om  /\  f : suc  A -1-1-onto-> suc  B
)  ->  B  ~~  ( suc  B  \  {
( f `  A
) } ) )
4544ensymd 8007 . . . . . 6  |-  ( ( B  e.  om  /\  f : suc  A -1-1-onto-> suc  B
)  ->  ( suc  B 
\  { ( f `
 A ) } )  ~~  B )
46 entr 8008 . . . . . 6  |-  ( ( A  ~~  ( suc 
B  \  { (
f `  A ) } )  /\  ( suc  B  \  { ( f `  A ) } )  ~~  B
)  ->  A  ~~  B )
4736, 45, 46syl2an 494 . . . . 5  |-  ( ( ( A  e.  om  /\  f : suc  A -1-1-onto-> suc  B )  /\  ( B  e.  om  /\  f : suc  A -1-1-onto-> suc  B ) )  ->  A  ~~  B
)
4847anandirs 874 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  f : suc  A -1-1-onto-> suc  B )  ->  A  ~~  B )
4948ex 450 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( f : suc  A -1-1-onto-> suc 
B  ->  A  ~~  B ) )
5049exlimdv 1861 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( E. f  f : suc  A -1-1-onto-> suc  B  ->  A  ~~  B ) )
511, 50syl5bi 232 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  ~~  suc  B  ->  A  ~~  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200    \ cdif 3571    C_ wss 3574   {csn 4177   class class class wbr 4653   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117   Ord word 5722   suc csuc 5725   Fun wfun 5882    Fn wfn 5883   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888   omcom 7065    ~~ cen 7952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-er 7742  df-en 7956
This theorem is referenced by:  nneneq  8143
  Copyright terms: Public domain W3C validator