| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phplem4 | Structured version Visualization version Unicode version | ||
| Description: Lemma for Pigeonhole Principle. Equinumerosity of successors implies equinumerosity of the original natural numbers. (Contributed by NM, 28-May-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| phplem2.1 |
|
| phplem2.2 |
|
| Ref | Expression |
|---|---|
| phplem4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren 7964 |
. 2
| |
| 2 | f1of1 6136 |
. . . . . . . . . 10
| |
| 3 | 2 | adantl 482 |
. . . . . . . . 9
|
| 4 | phplem2.2 |
. . . . . . . . . 10
| |
| 5 | 4 | sucex 7011 |
. . . . . . . . 9
|
| 6 | sssucid 5802 |
. . . . . . . . . 10
| |
| 7 | phplem2.1 |
. . . . . . . . . 10
| |
| 8 | f1imaen2g 8017 |
. . . . . . . . . 10
| |
| 9 | 6, 7, 8 | mpanr12 721 |
. . . . . . . . 9
|
| 10 | 3, 5, 9 | sylancl 694 |
. . . . . . . 8
|
| 11 | 10 | ensymd 8007 |
. . . . . . 7
|
| 12 | nnord 7073 |
. . . . . . . . . 10
| |
| 13 | orddif 5820 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | syl 17 |
. . . . . . . . 9
|
| 15 | 14 | imaeq2d 5466 |
. . . . . . . 8
|
| 16 | f1ofn 6138 |
. . . . . . . . . . 11
| |
| 17 | 7 | sucid 5804 |
. . . . . . . . . . 11
|
| 18 | fnsnfv 6258 |
. . . . . . . . . . 11
| |
| 19 | 16, 17, 18 | sylancl 694 |
. . . . . . . . . 10
|
| 20 | 19 | difeq2d 3728 |
. . . . . . . . 9
|
| 21 | imadmrn 5476 |
. . . . . . . . . . . 12
| |
| 22 | 21 | eqcomi 2631 |
. . . . . . . . . . 11
|
| 23 | f1ofo 6144 |
. . . . . . . . . . . 12
| |
| 24 | forn 6118 |
. . . . . . . . . . . 12
| |
| 25 | 23, 24 | syl 17 |
. . . . . . . . . . 11
|
| 26 | f1odm 6141 |
. . . . . . . . . . . 12
| |
| 27 | 26 | imaeq2d 5466 |
. . . . . . . . . . 11
|
| 28 | 22, 25, 27 | 3eqtr3a 2680 |
. . . . . . . . . 10
|
| 29 | 28 | difeq1d 3727 |
. . . . . . . . 9
|
| 30 | dff1o3 6143 |
. . . . . . . . . . 11
| |
| 31 | 30 | simprbi 480 |
. . . . . . . . . 10
|
| 32 | imadif 5973 |
. . . . . . . . . 10
| |
| 33 | 31, 32 | syl 17 |
. . . . . . . . 9
|
| 34 | 20, 29, 33 | 3eqtr4rd 2667 |
. . . . . . . 8
|
| 35 | 15, 34 | sylan9eq 2676 |
. . . . . . 7
|
| 36 | 11, 35 | breqtrd 4679 |
. . . . . 6
|
| 37 | fnfvelrn 6356 |
. . . . . . . . . 10
| |
| 38 | 16, 17, 37 | sylancl 694 |
. . . . . . . . 9
|
| 39 | 24 | eleq2d 2687 |
. . . . . . . . . 10
|
| 40 | 23, 39 | syl 17 |
. . . . . . . . 9
|
| 41 | 38, 40 | mpbid 222 |
. . . . . . . 8
|
| 42 | fvex 6201 |
. . . . . . . . 9
| |
| 43 | 4, 42 | phplem3 8141 |
. . . . . . . 8
|
| 44 | 41, 43 | sylan2 491 |
. . . . . . 7
|
| 45 | 44 | ensymd 8007 |
. . . . . 6
|
| 46 | entr 8008 |
. . . . . 6
| |
| 47 | 36, 45, 46 | syl2an 494 |
. . . . 5
|
| 48 | 47 | anandirs 874 |
. . . 4
|
| 49 | 48 | ex 450 |
. . 3
|
| 50 | 49 | exlimdv 1861 |
. 2
|
| 51 | 1, 50 | syl5bi 232 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-er 7742 df-en 7956 |
| This theorem is referenced by: nneneq 8143 |
| Copyright terms: Public domain | W3C validator |