MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordequn Structured version   Visualization version   Unicode version

Theorem ordequn 5828
Description: The maximum (i.e. union) of two ordinals is either one or the other. Similar to Exercise 14 of [TakeutiZaring] p. 40. (Contributed by NM, 28-Nov-2003.)
Assertion
Ref Expression
ordequn  |-  ( ( Ord  B  /\  Ord  C )  ->  ( A  =  ( B  u.  C )  ->  ( A  =  B  \/  A  =  C )
) )

Proof of Theorem ordequn
StepHypRef Expression
1 ordtri2or2 5823 . . 3  |-  ( ( Ord  B  /\  Ord  C )  ->  ( B  C_  C  \/  C  C_  B ) )
21orcomd 403 . 2  |-  ( ( Ord  B  /\  Ord  C )  ->  ( C  C_  B  \/  B  C_  C ) )
3 eqeq1 2626 . . . 4  |-  ( A  =  ( B  u.  C )  ->  ( A  =  B  <->  ( B  u.  C )  =  B ) )
4 ssequn2 3786 . . . 4  |-  ( C 
C_  B  <->  ( B  u.  C )  =  B )
53, 4syl6rbbr 279 . . 3  |-  ( A  =  ( B  u.  C )  ->  ( C  C_  B  <->  A  =  B ) )
6 eqeq1 2626 . . . 4  |-  ( A  =  ( B  u.  C )  ->  ( A  =  C  <->  ( B  u.  C )  =  C ) )
7 ssequn1 3783 . . . 4  |-  ( B 
C_  C  <->  ( B  u.  C )  =  C )
86, 7syl6rbbr 279 . . 3  |-  ( A  =  ( B  u.  C )  ->  ( B  C_  C  <->  A  =  C ) )
95, 8orbi12d 746 . 2  |-  ( A  =  ( B  u.  C )  ->  (
( C  C_  B  \/  B  C_  C )  <-> 
( A  =  B  \/  A  =  C ) ) )
102, 9syl5ibcom 235 1  |-  ( ( Ord  B  /\  Ord  C )  ->  ( A  =  ( B  u.  C )  ->  ( A  =  B  \/  A  =  C )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    u. cun 3572    C_ wss 3574   Ord word 5722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726
This theorem is referenced by:  ordun  5829  inar1  9597
  Copyright terms: Public domain W3C validator