MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcco Structured version   Visualization version   Unicode version

Theorem xpcco 16823
Description: Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
xpccofval.t  |-  T  =  ( C  X.c  D )
xpccofval.b  |-  B  =  ( Base `  T
)
xpccofval.k  |-  K  =  ( Hom  `  T
)
xpccofval.o1  |-  .x.  =  (comp `  C )
xpccofval.o2  |-  .xb  =  (comp `  D )
xpccofval.o  |-  O  =  (comp `  T )
xpcco.x  |-  ( ph  ->  X  e.  B )
xpcco.y  |-  ( ph  ->  Y  e.  B )
xpcco.z  |-  ( ph  ->  Z  e.  B )
xpcco.f  |-  ( ph  ->  F  e.  ( X K Y ) )
xpcco.g  |-  ( ph  ->  G  e.  ( Y K Z ) )
Assertion
Ref Expression
xpcco  |-  ( ph  ->  ( G ( <. X ,  Y >. O Z ) F )  =  <. ( ( 1st `  G ) ( <.
( 1st `  X
) ,  ( 1st `  Y ) >.  .x.  ( 1st `  Z ) ) ( 1st `  F
) ) ,  ( ( 2nd `  G
) ( <. ( 2nd `  X ) ,  ( 2nd `  Y
) >.  .xb  ( 2nd `  Z
) ) ( 2nd `  F ) ) >.
)

Proof of Theorem xpcco
Dummy variables  f 
g  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpccofval.t . . 3  |-  T  =  ( C  X.c  D )
2 xpccofval.b . . 3  |-  B  =  ( Base `  T
)
3 xpccofval.k . . 3  |-  K  =  ( Hom  `  T
)
4 xpccofval.o1 . . 3  |-  .x.  =  (comp `  C )
5 xpccofval.o2 . . 3  |-  .xb  =  (comp `  D )
6 xpccofval.o . . 3  |-  O  =  (comp `  T )
71, 2, 3, 4, 5, 6xpccofval 16822 . 2  |-  O  =  ( x  e.  ( B  X.  B ) ,  y  e.  B  |->  ( g  e.  ( ( 2nd `  x
) K y ) ,  f  e.  ( K `  x ) 
|->  <. ( ( 1st `  g ) ( <.
( 1st `  ( 1st `  x ) ) ,  ( 1st `  ( 2nd `  x ) )
>.  .x.  ( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.  .xb  ( 2nd `  y
) ) ( 2nd `  f ) ) >.
) )
8 xpcco.x . . . 4  |-  ( ph  ->  X  e.  B )
9 xpcco.y . . . 4  |-  ( ph  ->  Y  e.  B )
10 opelxpi 5148 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  -> 
<. X ,  Y >.  e.  ( B  X.  B
) )
118, 9, 10syl2anc 693 . . 3  |-  ( ph  -> 
<. X ,  Y >.  e.  ( B  X.  B
) )
12 xpcco.z . . . 4  |-  ( ph  ->  Z  e.  B )
1312adantr 481 . . 3  |-  ( (
ph  /\  x  =  <. X ,  Y >. )  ->  Z  e.  B
)
14 ovex 6678 . . . . 5  |-  ( ( 2nd `  x ) K y )  e. 
_V
15 fvex 6201 . . . . 5  |-  ( K `
 x )  e. 
_V
1614, 15mpt2ex 7247 . . . 4  |-  ( g  e.  ( ( 2nd `  x ) K y ) ,  f  e.  ( K `  x
)  |->  <. ( ( 1st `  g ) ( <.
( 1st `  ( 1st `  x ) ) ,  ( 1st `  ( 2nd `  x ) )
>.  .x.  ( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.  .xb  ( 2nd `  y
) ) ( 2nd `  f ) ) >.
)  e.  _V
1716a1i 11 . . 3  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  Z ) )  ->  (
g  e.  ( ( 2nd `  x ) K y ) ,  f  e.  ( K `
 x )  |->  <.
( ( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.  .x.  ( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.  .xb  ( 2nd `  y
) ) ( 2nd `  f ) ) >.
)  e.  _V )
18 xpcco.g . . . . . 6  |-  ( ph  ->  G  e.  ( Y K Z ) )
1918adantr 481 . . . . 5  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  Z ) )  ->  G  e.  ( Y K Z ) )
20 simprl 794 . . . . . . . 8  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  Z ) )  ->  x  =  <. X ,  Y >. )
2120fveq2d 6195 . . . . . . 7  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  Z ) )  ->  ( 2nd `  x )  =  ( 2nd `  <. X ,  Y >. )
)
22 op2ndg 7181 . . . . . . . . 9  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( 2nd `  <. X ,  Y >. )  =  Y )
238, 9, 22syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( 2nd `  <. X ,  Y >. )  =  Y )
2423adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  Z ) )  ->  ( 2nd `  <. X ,  Y >. )  =  Y )
2521, 24eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  Z ) )  ->  ( 2nd `  x )  =  Y )
26 simprr 796 . . . . . 6  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  Z ) )  ->  y  =  Z )
2725, 26oveq12d 6668 . . . . 5  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  Z ) )  ->  (
( 2nd `  x
) K y )  =  ( Y K Z ) )
2819, 27eleqtrrd 2704 . . . 4  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  Z ) )  ->  G  e.  ( ( 2nd `  x
) K y ) )
29 xpcco.f . . . . . . 7  |-  ( ph  ->  F  e.  ( X K Y ) )
3029adantr 481 . . . . . 6  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  Z ) )  ->  F  e.  ( X K Y ) )
3120fveq2d 6195 . . . . . . 7  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  Z ) )  ->  ( K `  x )  =  ( K `  <. X ,  Y >. ) )
32 df-ov 6653 . . . . . . 7  |-  ( X K Y )  =  ( K `  <. X ,  Y >. )
3331, 32syl6eqr 2674 . . . . . 6  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  Z ) )  ->  ( K `  x )  =  ( X K Y ) )
3430, 33eleqtrrd 2704 . . . . 5  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  Z ) )  ->  F  e.  ( K `  x
) )
3534adantr 481 . . . 4  |-  ( ( ( ph  /\  (
x  =  <. X ,  Y >.  /\  y  =  Z ) )  /\  g  =  G )  ->  F  e.  ( K `
 x ) )
36 opex 4932 . . . . 5  |-  <. (
( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.  .x.  ( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.  .xb  ( 2nd `  y
) ) ( 2nd `  f ) ) >.  e.  _V
3736a1i 11 . . . 4  |-  ( ( ( ph  /\  (
x  =  <. X ,  Y >.  /\  y  =  Z ) )  /\  ( g  =  G  /\  f  =  F ) )  ->  <. (
( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.  .x.  ( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.  .xb  ( 2nd `  y
) ) ( 2nd `  f ) ) >.  e.  _V )
3820fveq2d 6195 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  Z ) )  ->  ( 1st `  x )  =  ( 1st `  <. X ,  Y >. )
)
39 op1stg 7180 . . . . . . . . . . . . 13  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( 1st `  <. X ,  Y >. )  =  X )
408, 9, 39syl2anc 693 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1st `  <. X ,  Y >. )  =  X )
4140adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  Z ) )  ->  ( 1st `  <. X ,  Y >. )  =  X )
4238, 41eqtrd 2656 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  Z ) )  ->  ( 1st `  x )  =  X )
4342adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  =  <. X ,  Y >.  /\  y  =  Z ) )  /\  ( g  =  G  /\  f  =  F ) )  ->  ( 1st `  x )  =  X )
4443fveq2d 6195 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  =  <. X ,  Y >.  /\  y  =  Z ) )  /\  ( g  =  G  /\  f  =  F ) )  ->  ( 1st `  ( 1st `  x
) )  =  ( 1st `  X ) )
4525adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  =  <. X ,  Y >.  /\  y  =  Z ) )  /\  ( g  =  G  /\  f  =  F ) )  ->  ( 2nd `  x )  =  Y )
4645fveq2d 6195 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  =  <. X ,  Y >.  /\  y  =  Z ) )  /\  ( g  =  G  /\  f  =  F ) )  ->  ( 1st `  ( 2nd `  x
) )  =  ( 1st `  Y ) )
4744, 46opeq12d 4410 . . . . . . 7  |-  ( ( ( ph  /\  (
x  =  <. X ,  Y >.  /\  y  =  Z ) )  /\  ( g  =  G  /\  f  =  F ) )  ->  <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.  =  <. ( 1st `  X
) ,  ( 1st `  Y ) >. )
48 simplrr 801 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  =  <. X ,  Y >.  /\  y  =  Z ) )  /\  ( g  =  G  /\  f  =  F ) )  ->  y  =  Z )
4948fveq2d 6195 . . . . . . 7  |-  ( ( ( ph  /\  (
x  =  <. X ,  Y >.  /\  y  =  Z ) )  /\  ( g  =  G  /\  f  =  F ) )  ->  ( 1st `  y )  =  ( 1st `  Z
) )
5047, 49oveq12d 6668 . . . . . 6  |-  ( ( ( ph  /\  (
x  =  <. X ,  Y >.  /\  y  =  Z ) )  /\  ( g  =  G  /\  f  =  F ) )  ->  ( <. ( 1st `  ( 1st `  x ) ) ,  ( 1st `  ( 2nd `  x ) )
>.  .x.  ( 1st `  y
) )  =  (
<. ( 1st `  X
) ,  ( 1st `  Y ) >.  .x.  ( 1st `  Z ) ) )
51 simprl 794 . . . . . . 7  |-  ( ( ( ph  /\  (
x  =  <. X ,  Y >.  /\  y  =  Z ) )  /\  ( g  =  G  /\  f  =  F ) )  ->  g  =  G )
5251fveq2d 6195 . . . . . 6  |-  ( ( ( ph  /\  (
x  =  <. X ,  Y >.  /\  y  =  Z ) )  /\  ( g  =  G  /\  f  =  F ) )  ->  ( 1st `  g )  =  ( 1st `  G
) )
53 simprr 796 . . . . . . 7  |-  ( ( ( ph  /\  (
x  =  <. X ,  Y >.  /\  y  =  Z ) )  /\  ( g  =  G  /\  f  =  F ) )  ->  f  =  F )
5453fveq2d 6195 . . . . . 6  |-  ( ( ( ph  /\  (
x  =  <. X ,  Y >.  /\  y  =  Z ) )  /\  ( g  =  G  /\  f  =  F ) )  ->  ( 1st `  f )  =  ( 1st `  F
) )
5550, 52, 54oveq123d 6671 . . . . 5  |-  ( ( ( ph  /\  (
x  =  <. X ,  Y >.  /\  y  =  Z ) )  /\  ( g  =  G  /\  f  =  F ) )  ->  (
( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.  .x.  ( 1st `  y
) ) ( 1st `  f ) )  =  ( ( 1st `  G
) ( <. ( 1st `  X ) ,  ( 1st `  Y
) >.  .x.  ( 1st `  Z ) ) ( 1st `  F ) ) )
5643fveq2d 6195 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  =  <. X ,  Y >.  /\  y  =  Z ) )  /\  ( g  =  G  /\  f  =  F ) )  ->  ( 2nd `  ( 1st `  x
) )  =  ( 2nd `  X ) )
5745fveq2d 6195 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  =  <. X ,  Y >.  /\  y  =  Z ) )  /\  ( g  =  G  /\  f  =  F ) )  ->  ( 2nd `  ( 2nd `  x
) )  =  ( 2nd `  Y ) )
5856, 57opeq12d 4410 . . . . . . 7  |-  ( ( ( ph  /\  (
x  =  <. X ,  Y >.  /\  y  =  Z ) )  /\  ( g  =  G  /\  f  =  F ) )  ->  <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.  =  <. ( 2nd `  X
) ,  ( 2nd `  Y ) >. )
5948fveq2d 6195 . . . . . . 7  |-  ( ( ( ph  /\  (
x  =  <. X ,  Y >.  /\  y  =  Z ) )  /\  ( g  =  G  /\  f  =  F ) )  ->  ( 2nd `  y )  =  ( 2nd `  Z
) )
6058, 59oveq12d 6668 . . . . . 6  |-  ( ( ( ph  /\  (
x  =  <. X ,  Y >.  /\  y  =  Z ) )  /\  ( g  =  G  /\  f  =  F ) )  ->  ( <. ( 2nd `  ( 1st `  x ) ) ,  ( 2nd `  ( 2nd `  x ) )
>.  .xb  ( 2nd `  y
) )  =  (
<. ( 2nd `  X
) ,  ( 2nd `  Y ) >.  .xb  ( 2nd `  Z ) ) )
6151fveq2d 6195 . . . . . 6  |-  ( ( ( ph  /\  (
x  =  <. X ,  Y >.  /\  y  =  Z ) )  /\  ( g  =  G  /\  f  =  F ) )  ->  ( 2nd `  g )  =  ( 2nd `  G
) )
6253fveq2d 6195 . . . . . 6  |-  ( ( ( ph  /\  (
x  =  <. X ,  Y >.  /\  y  =  Z ) )  /\  ( g  =  G  /\  f  =  F ) )  ->  ( 2nd `  f )  =  ( 2nd `  F
) )
6360, 61, 62oveq123d 6671 . . . . 5  |-  ( ( ( ph  /\  (
x  =  <. X ,  Y >.  /\  y  =  Z ) )  /\  ( g  =  G  /\  f  =  F ) )  ->  (
( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.  .xb  ( 2nd `  y
) ) ( 2nd `  f ) )  =  ( ( 2nd `  G
) ( <. ( 2nd `  X ) ,  ( 2nd `  Y
) >.  .xb  ( 2nd `  Z
) ) ( 2nd `  F ) ) )
6455, 63opeq12d 4410 . . . 4  |-  ( ( ( ph  /\  (
x  =  <. X ,  Y >.  /\  y  =  Z ) )  /\  ( g  =  G  /\  f  =  F ) )  ->  <. (
( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.  .x.  ( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.  .xb  ( 2nd `  y
) ) ( 2nd `  f ) ) >.  =  <. ( ( 1st `  G ) ( <.
( 1st `  X
) ,  ( 1st `  Y ) >.  .x.  ( 1st `  Z ) ) ( 1st `  F
) ) ,  ( ( 2nd `  G
) ( <. ( 2nd `  X ) ,  ( 2nd `  Y
) >.  .xb  ( 2nd `  Z
) ) ( 2nd `  F ) ) >.
)
6528, 35, 37, 64ovmpt2dv2 6794 . . 3  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  Z ) )  ->  (
( <. X ,  Y >. O Z )  =  ( g  e.  ( ( 2nd `  x
) K y ) ,  f  e.  ( K `  x ) 
|->  <. ( ( 1st `  g ) ( <.
( 1st `  ( 1st `  x ) ) ,  ( 1st `  ( 2nd `  x ) )
>.  .x.  ( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.  .xb  ( 2nd `  y
) ) ( 2nd `  f ) ) >.
)  ->  ( G
( <. X ,  Y >. O Z ) F )  =  <. (
( 1st `  G
) ( <. ( 1st `  X ) ,  ( 1st `  Y
) >.  .x.  ( 1st `  Z ) ) ( 1st `  F ) ) ,  ( ( 2nd `  G ) ( <. ( 2nd `  X
) ,  ( 2nd `  Y ) >.  .xb  ( 2nd `  Z ) ) ( 2nd `  F
) ) >. )
)
6611, 13, 17, 65ovmpt2dv 6793 . 2  |-  ( ph  ->  ( O  =  ( x  e.  ( B  X.  B ) ,  y  e.  B  |->  ( g  e.  ( ( 2nd `  x ) K y ) ,  f  e.  ( K `
 x )  |->  <.
( ( 1st `  g
) ( <. ( 1st `  ( 1st `  x
) ) ,  ( 1st `  ( 2nd `  x ) ) >.  .x.  ( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.  .xb  ( 2nd `  y
) ) ( 2nd `  f ) ) >.
) )  ->  ( G ( <. X ,  Y >. O Z ) F )  =  <. ( ( 1st `  G
) ( <. ( 1st `  X ) ,  ( 1st `  Y
) >.  .x.  ( 1st `  Z ) ) ( 1st `  F ) ) ,  ( ( 2nd `  G ) ( <. ( 2nd `  X
) ,  ( 2nd `  Y ) >.  .xb  ( 2nd `  Z ) ) ( 2nd `  F
) ) >. )
)
677, 66mpi 20 1  |-  ( ph  ->  ( G ( <. X ,  Y >. O Z ) F )  =  <. ( ( 1st `  G ) ( <.
( 1st `  X
) ,  ( 1st `  Y ) >.  .x.  ( 1st `  Z ) ) ( 1st `  F
) ) ,  ( ( 2nd `  G
) ( <. ( 2nd `  X ) ,  ( 2nd `  Y
) >.  .xb  ( 2nd `  Z
) ) ( 2nd `  F ) ) >.
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183    X. cxp 5112   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   Basecbs 15857   Hom chom 15952  compcco 15953    X.c cxpc 16808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-hom 15966  df-cco 15967  df-xpc 16812
This theorem is referenced by:  xpcco1st  16824  xpcco2nd  16825  xpcco2  16827  xpccatid  16828
  Copyright terms: Public domain W3C validator