Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddclN Structured version   Visualization version   Unicode version

Theorem paddclN 35128
Description: The projective sum of two subspaces is a subspace. Part of Lemma 16.2 of [MaedaMaeda] p. 68. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
paddidm.s  |-  S  =  ( PSubSp `  K )
paddidm.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
paddclN  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  Y
)  e.  S )

Proof of Theorem paddclN
Dummy variables  p  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . 3  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  K  e.  HL )
2 eqid 2622 . . . . 5  |-  ( Atoms `  K )  =  (
Atoms `  K )
3 paddidm.s . . . . 5  |-  S  =  ( PSubSp `  K )
42, 3psubssat 35040 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  S )  ->  X  C_  ( Atoms `  K ) )
543adant3 1081 . . 3  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  X  C_  ( Atoms `  K ) )
62, 3psubssat 35040 . . . 4  |-  ( ( K  e.  HL  /\  Y  e.  S )  ->  Y  C_  ( Atoms `  K ) )
763adant2 1080 . . 3  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  Y  C_  ( Atoms `  K ) )
8 paddidm.p . . . 4  |-  .+  =  ( +P `  K
)
92, 8paddssat 35100 . . 3  |-  ( ( K  e.  HL  /\  X  C_  ( Atoms `  K
)  /\  Y  C_  ( Atoms `  K ) )  ->  ( X  .+  Y )  C_  ( Atoms `  K ) )
101, 5, 7, 9syl3anc 1326 . 2  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  Y
)  C_  ( Atoms `  K ) )
11 olc 399 . . . . 5  |-  ( ( p  e.  ( Atoms `  K )  /\  E. q  e.  ( X  .+  Y ) E. r  e.  ( X  .+  Y
) p ( le
`  K ) ( q ( join `  K
) r ) )  ->  ( ( p  e.  ( X  .+  Y )  \/  p  e.  ( X  .+  Y
) )  \/  (
p  e.  ( Atoms `  K )  /\  E. q  e.  ( X  .+  Y ) E. r  e.  ( X  .+  Y
) p ( le
`  K ) ( q ( join `  K
) r ) ) ) )
12 eqid 2622 . . . . . . . 8  |-  ( le
`  K )  =  ( le `  K
)
13 eqid 2622 . . . . . . . 8  |-  ( join `  K )  =  (
join `  K )
1412, 13, 2, 8elpadd 35085 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  .+  Y ) 
C_  ( Atoms `  K
)  /\  ( X  .+  Y )  C_  ( Atoms `  K ) )  ->  ( p  e.  ( ( X  .+  Y )  .+  ( X  .+  Y ) )  <-> 
( ( p  e.  ( X  .+  Y
)  \/  p  e.  ( X  .+  Y
) )  \/  (
p  e.  ( Atoms `  K )  /\  E. q  e.  ( X  .+  Y ) E. r  e.  ( X  .+  Y
) p ( le
`  K ) ( q ( join `  K
) r ) ) ) ) )
151, 10, 10, 14syl3anc 1326 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( p  e.  ( ( X  .+  Y
)  .+  ( X  .+  Y ) )  <->  ( (
p  e.  ( X 
.+  Y )  \/  p  e.  ( X 
.+  Y ) )  \/  ( p  e.  ( Atoms `  K )  /\  E. q  e.  ( X  .+  Y ) E. r  e.  ( X  .+  Y ) p ( le `  K ) ( q ( join `  K
) r ) ) ) ) )
162, 8padd4N 35126 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( X  C_  ( Atoms `  K )  /\  Y  C_  ( Atoms `  K )
)  /\  ( X  C_  ( Atoms `  K )  /\  Y  C_  ( Atoms `  K ) ) )  ->  ( ( X 
.+  Y )  .+  ( X  .+  Y ) )  =  ( ( X  .+  X ) 
.+  ( Y  .+  Y ) ) )
171, 5, 7, 5, 7, 16syl122anc 1335 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( ( X  .+  Y )  .+  ( X  .+  Y ) )  =  ( ( X 
.+  X )  .+  ( Y  .+  Y ) ) )
183, 8paddidm 35127 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  X  e.  S )  ->  ( X  .+  X
)  =  X )
19183adant3 1081 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  X
)  =  X )
203, 8paddidm 35127 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  Y  e.  S )  ->  ( Y  .+  Y
)  =  Y )
21203adant2 1080 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( Y  .+  Y
)  =  Y )
2219, 21oveq12d 6668 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( ( X  .+  X )  .+  ( Y  .+  Y ) )  =  ( X  .+  Y ) )
2317, 22eqtrd 2656 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( ( X  .+  Y )  .+  ( X  .+  Y ) )  =  ( X  .+  Y ) )
2423eleq2d 2687 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( p  e.  ( ( X  .+  Y
)  .+  ( X  .+  Y ) )  <->  p  e.  ( X  .+  Y ) ) )
2515, 24bitr3d 270 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( ( ( p  e.  ( X  .+  Y )  \/  p  e.  ( X  .+  Y
) )  \/  (
p  e.  ( Atoms `  K )  /\  E. q  e.  ( X  .+  Y ) E. r  e.  ( X  .+  Y
) p ( le
`  K ) ( q ( join `  K
) r ) ) )  <->  p  e.  ( X  .+  Y ) ) )
2611, 25syl5ib 234 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( ( p  e.  ( Atoms `  K )  /\  E. q  e.  ( X  .+  Y ) E. r  e.  ( X  .+  Y ) p ( le `  K ) ( q ( join `  K
) r ) )  ->  p  e.  ( X  .+  Y ) ) )
2726expd 452 . . 3  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( p  e.  (
Atoms `  K )  -> 
( E. q  e.  ( X  .+  Y
) E. r  e.  ( X  .+  Y
) p ( le
`  K ) ( q ( join `  K
) r )  ->  p  e.  ( X  .+  Y ) ) ) )
2827ralrimiv 2965 . 2  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  A. p  e.  (
Atoms `  K ) ( E. q  e.  ( X  .+  Y ) E. r  e.  ( X  .+  Y ) p ( le `  K ) ( q ( join `  K
) r )  ->  p  e.  ( X  .+  Y ) ) )
2912, 13, 2, 3ispsubsp2 35032 . . 3  |-  ( K  e.  HL  ->  (
( X  .+  Y
)  e.  S  <->  ( ( X  .+  Y )  C_  ( Atoms `  K )  /\  A. p  e.  (
Atoms `  K ) ( E. q  e.  ( X  .+  Y ) E. r  e.  ( X  .+  Y ) p ( le `  K ) ( q ( join `  K
) r )  ->  p  e.  ( X  .+  Y ) ) ) ) )
30293ad2ant1 1082 . 2  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( ( X  .+  Y )  e.  S  <->  ( ( X  .+  Y
)  C_  ( Atoms `  K )  /\  A. p  e.  ( Atoms `  K ) ( E. q  e.  ( X 
.+  Y ) E. r  e.  ( X 
.+  Y ) p ( le `  K
) ( q (
join `  K )
r )  ->  p  e.  ( X  .+  Y
) ) ) ) )
3110, 28, 30mpbir2and 957 1  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  Y
)  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   lecple 15948   joincjn 16944   Atomscatm 34550   HLchlt 34637   PSubSpcpsubsp 34782   +Pcpadd 35081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-psubsp 34789  df-padd 35082
This theorem is referenced by:  pmodl42N  35137  pclun2N  35185
  Copyright terms: Public domain W3C validator