Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclss2polN Structured version   Visualization version   Unicode version

Theorem pclss2polN 35207
Description: The projective subspace closure is a subset of closed subspace closure. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclss2pol.a  |-  A  =  ( Atoms `  K )
pclss2pol.o  |-  ._|_  =  ( _|_P `  K
)
pclss2pol.c  |-  U  =  ( PCl `  K
)
Assertion
Ref Expression
pclss2polN  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( U `  X
)  C_  (  ._|_  `  (  ._|_  `  X ) ) )

Proof of Theorem pclss2polN
StepHypRef Expression
1 simpl 473 . . 3  |-  ( ( K  e.  HL  /\  X  C_  A )  ->  K  e.  HL )
2 pclss2pol.a . . . 4  |-  A  =  ( Atoms `  K )
3 pclss2pol.o . . . 4  |-  ._|_  =  ( _|_P `  K
)
42, 32polssN 35201 . . 3  |-  ( ( K  e.  HL  /\  X  C_  A )  ->  X  C_  (  ._|_  `  (  ._|_  `  X ) ) )
52, 3polssatN 35194 . . . 4  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
(  ._|_  `  X )  C_  A )
62, 3polssatN 35194 . . . 4  |-  ( ( K  e.  HL  /\  (  ._|_  `  X )  C_  A )  ->  (  ._|_  `  (  ._|_  `  X
) )  C_  A
)
75, 6syldan 487 . . 3  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
(  ._|_  `  (  ._|_  `  X ) )  C_  A )
8 pclss2pol.c . . . 4  |-  U  =  ( PCl `  K
)
92, 8pclssN 35180 . . 3  |-  ( ( K  e.  HL  /\  X  C_  (  ._|_  `  (  ._|_  `  X ) )  /\  (  ._|_  `  (  ._|_  `  X ) ) 
C_  A )  -> 
( U `  X
)  C_  ( U `  (  ._|_  `  (  ._|_  `  X ) ) ) )
101, 4, 7, 9syl3anc 1326 . 2  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( U `  X
)  C_  ( U `  (  ._|_  `  (  ._|_  `  X ) ) ) )
11 eqid 2622 . . . . 5  |-  ( PSubSp `  K )  =  (
PSubSp `  K )
122, 11, 3polsubN 35193 . . . 4  |-  ( ( K  e.  HL  /\  (  ._|_  `  X )  C_  A )  ->  (  ._|_  `  (  ._|_  `  X
) )  e.  (
PSubSp `  K ) )
135, 12syldan 487 . . 3  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
(  ._|_  `  (  ._|_  `  X ) )  e.  ( PSubSp `  K )
)
1411, 8pclidN 35182 . . 3  |-  ( ( K  e.  HL  /\  (  ._|_  `  (  ._|_  `  X ) )  e.  ( PSubSp `  K )
)  ->  ( U `  (  ._|_  `  (  ._|_  `  X ) ) )  =  (  ._|_  `  (  ._|_  `  X ) ) )
1513, 14syldan 487 . 2  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( U `  (  ._|_  `  (  ._|_  `  X
) ) )  =  (  ._|_  `  (  ._|_  `  X ) ) )
1610, 15sseqtrd 3641 1  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( U `  X
)  C_  (  ._|_  `  (  ._|_  `  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   ` cfv 5888   Atomscatm 34550   HLchlt 34637   PSubSpcpsubsp 34782   PClcpclN 35173   _|_PcpolN 35188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-undef 7399  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-psubsp 34789  df-pmap 34790  df-pclN 35174  df-polarityN 35189
This theorem is referenced by:  pcl0N  35208
  Copyright terms: Public domain W3C validator