| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ip0i | Structured version Visualization version Unicode version | ||
| Description: A slight variant of
Equation 6.46 of [Ponnusamy] p. 362, where
|
| Ref | Expression |
|---|---|
| ip1i.1 |
|
| ip1i.2 |
|
| ip1i.4 |
|
| ip1i.7 |
|
| ip1i.9 |
|
| ip1i.a |
|
| ip1i.b |
|
| ip1i.c |
|
| ip1i.6 |
|
| ip0i.j |
|
| Ref | Expression |
|---|---|
| ip0i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 11091 |
. . . 4
| |
| 2 | ip1i.1 |
. . . . . . 7
| |
| 3 | ip1i.6 |
. . . . . . 7
| |
| 4 | ip1i.9 |
. . . . . . . 8
| |
| 5 | 4 | phnvi 27671 |
. . . . . . 7
|
| 6 | ip1i.a |
. . . . . . . 8
| |
| 7 | ip0i.j |
. . . . . . . . 9
| |
| 8 | ip1i.c |
. . . . . . . . 9
| |
| 9 | ip1i.4 |
. . . . . . . . . 10
| |
| 10 | 2, 9 | nvscl 27481 |
. . . . . . . . 9
|
| 11 | 5, 7, 8, 10 | mp3an 1424 |
. . . . . . . 8
|
| 12 | ip1i.2 |
. . . . . . . . 9
| |
| 13 | 2, 12 | nvgcl 27475 |
. . . . . . . 8
|
| 14 | 5, 6, 11, 13 | mp3an 1424 |
. . . . . . 7
|
| 15 | 2, 3, 5, 14 | nvcli 27517 |
. . . . . 6
|
| 16 | 15 | recni 10052 |
. . . . 5
|
| 17 | 16 | sqcli 12944 |
. . . 4
|
| 18 | 7 | negcli 10349 |
. . . . . . . . 9
|
| 19 | 2, 9 | nvscl 27481 |
. . . . . . . . 9
|
| 20 | 5, 18, 8, 19 | mp3an 1424 |
. . . . . . . 8
|
| 21 | 2, 12 | nvgcl 27475 |
. . . . . . . 8
|
| 22 | 5, 6, 20, 21 | mp3an 1424 |
. . . . . . 7
|
| 23 | 2, 3, 5, 22 | nvcli 27517 |
. . . . . 6
|
| 24 | 23 | recni 10052 |
. . . . 5
|
| 25 | 24 | sqcli 12944 |
. . . 4
|
| 26 | 1, 17, 25 | subdii 10479 |
. . 3
|
| 27 | 1, 17 | mulcli 10045 |
. . . 4
|
| 28 | 1, 25 | mulcli 10045 |
. . . 4
|
| 29 | ip1i.b |
. . . . . . . 8
| |
| 30 | 2, 3, 5, 29 | nvcli 27517 |
. . . . . . 7
|
| 31 | 30 | recni 10052 |
. . . . . 6
|
| 32 | 31 | sqcli 12944 |
. . . . 5
|
| 33 | 1, 32 | mulcli 10045 |
. . . 4
|
| 34 | pnpcan2 10321 |
. . . 4
| |
| 35 | 27, 28, 33, 34 | mp3an 1424 |
. . 3
|
| 36 | 26, 35 | eqtr4i 2647 |
. 2
|
| 37 | eqid 2622 |
. . . . . . . . . 10
| |
| 38 | 37 | nvvc 27470 |
. . . . . . . . 9
|
| 39 | 12 | vafval 27458 |
. . . . . . . . . 10
|
| 40 | 39 | vcablo 27424 |
. . . . . . . . 9
|
| 41 | 5, 38, 40 | mp2b 10 |
. . . . . . . 8
|
| 42 | 6, 29, 11 | 3pm3.2i 1239 |
. . . . . . . 8
|
| 43 | 2, 12 | bafval 27459 |
. . . . . . . . 9
|
| 44 | 43 | ablo32 27403 |
. . . . . . . 8
|
| 45 | 41, 42, 44 | mp2an 708 |
. . . . . . 7
|
| 46 | 45 | fveq2i 6194 |
. . . . . 6
|
| 47 | 46 | oveq1i 6660 |
. . . . 5
|
| 48 | neg1cn 11124 |
. . . . . . . . . 10
| |
| 49 | 2, 9 | nvscl 27481 |
. . . . . . . . . 10
|
| 50 | 5, 48, 29, 49 | mp3an 1424 |
. . . . . . . . 9
|
| 51 | 6, 50, 11 | 3pm3.2i 1239 |
. . . . . . . 8
|
| 52 | 43 | ablo32 27403 |
. . . . . . . 8
|
| 53 | 41, 51, 52 | mp2an 708 |
. . . . . . 7
|
| 54 | 53 | fveq2i 6194 |
. . . . . 6
|
| 55 | 54 | oveq1i 6660 |
. . . . 5
|
| 56 | 47, 55 | oveq12i 6662 |
. . . 4
|
| 57 | 2, 12, 9, 3 | phpar 27679 |
. . . . 5
|
| 58 | 4, 14, 29, 57 | mp3an 1424 |
. . . 4
|
| 59 | 1, 17, 32 | adddii 10050 |
. . . 4
|
| 60 | 56, 58, 59 | 3eqtri 2648 |
. . 3
|
| 61 | 6, 29, 20 | 3pm3.2i 1239 |
. . . . . . . 8
|
| 62 | 43 | ablo32 27403 |
. . . . . . . 8
|
| 63 | 41, 61, 62 | mp2an 708 |
. . . . . . 7
|
| 64 | 63 | fveq2i 6194 |
. . . . . 6
|
| 65 | 64 | oveq1i 6660 |
. . . . 5
|
| 66 | 6, 50, 20 | 3pm3.2i 1239 |
. . . . . . . 8
|
| 67 | 43 | ablo32 27403 |
. . . . . . . 8
|
| 68 | 41, 66, 67 | mp2an 708 |
. . . . . . 7
|
| 69 | 68 | fveq2i 6194 |
. . . . . 6
|
| 70 | 69 | oveq1i 6660 |
. . . . 5
|
| 71 | 65, 70 | oveq12i 6662 |
. . . 4
|
| 72 | 2, 12, 9, 3 | phpar 27679 |
. . . . 5
|
| 73 | 4, 22, 29, 72 | mp3an 1424 |
. . . 4
|
| 74 | 1, 25, 32 | adddii 10050 |
. . . 4
|
| 75 | 71, 73, 74 | 3eqtri 2648 |
. . 3
|
| 76 | 60, 75 | oveq12i 6662 |
. 2
|
| 77 | 2, 12 | nvgcl 27475 |
. . . . . . . 8
|
| 78 | 5, 6, 29, 77 | mp3an 1424 |
. . . . . . 7
|
| 79 | 2, 12 | nvgcl 27475 |
. . . . . . 7
|
| 80 | 5, 78, 11, 79 | mp3an 1424 |
. . . . . 6
|
| 81 | 2, 3, 5, 80 | nvcli 27517 |
. . . . 5
|
| 82 | 81 | recni 10052 |
. . . 4
|
| 83 | 82 | sqcli 12944 |
. . 3
|
| 84 | 2, 12 | nvgcl 27475 |
. . . . . . . 8
|
| 85 | 5, 6, 50, 84 | mp3an 1424 |
. . . . . . 7
|
| 86 | 2, 12 | nvgcl 27475 |
. . . . . . 7
|
| 87 | 5, 85, 11, 86 | mp3an 1424 |
. . . . . 6
|
| 88 | 2, 3, 5, 87 | nvcli 27517 |
. . . . 5
|
| 89 | 88 | recni 10052 |
. . . 4
|
| 90 | 89 | sqcli 12944 |
. . 3
|
| 91 | 2, 12 | nvgcl 27475 |
. . . . . . 7
|
| 92 | 5, 78, 20, 91 | mp3an 1424 |
. . . . . 6
|
| 93 | 2, 3, 5, 92 | nvcli 27517 |
. . . . 5
|
| 94 | 93 | recni 10052 |
. . . 4
|
| 95 | 94 | sqcli 12944 |
. . 3
|
| 96 | 2, 12 | nvgcl 27475 |
. . . . . . 7
|
| 97 | 5, 85, 20, 96 | mp3an 1424 |
. . . . . 6
|
| 98 | 2, 3, 5, 97 | nvcli 27517 |
. . . . 5
|
| 99 | 98 | recni 10052 |
. . . 4
|
| 100 | 99 | sqcli 12944 |
. . 3
|
| 101 | 83, 90, 95, 100 | addsub4i 10377 |
. 2
|
| 102 | 36, 76, 101 | 3eqtr2ri 2651 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-seq 12802 df-exp 12861 df-grpo 27347 df-ablo 27399 df-vc 27414 df-nv 27447 df-va 27450 df-ba 27451 df-sm 27452 df-0v 27453 df-nmcv 27455 df-ph 27668 |
| This theorem is referenced by: ip1ilem 27681 |
| Copyright terms: Public domain | W3C validator |