MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip0i Structured version   Visualization version   Unicode version

Theorem ip0i 27680
Description: A slight variant of Equation 6.46 of [Ponnusamy] p. 362, where  J is either 1 or -1 to represent +-1. (Contributed by NM, 23-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1  |-  X  =  ( BaseSet `  U )
ip1i.2  |-  G  =  ( +v `  U
)
ip1i.4  |-  S  =  ( .sOLD `  U )
ip1i.7  |-  P  =  ( .iOLD `  U )
ip1i.9  |-  U  e.  CPreHil
OLD
ip1i.a  |-  A  e.  X
ip1i.b  |-  B  e.  X
ip1i.c  |-  C  e.  X
ip1i.6  |-  N  =  ( normCV `  U )
ip0i.j  |-  J  e.  CC
Assertion
Ref Expression
ip0i  |-  ( ( ( ( N `  ( ( A G B ) G ( J S C ) ) ) ^ 2 )  -  ( ( N `  ( ( A G B ) G ( -u J S C ) ) ) ^ 2 ) )  +  ( ( ( N `  ( ( A G ( -u
1 S B ) ) G ( J S C ) ) ) ^ 2 )  -  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u J S C ) ) ) ^ 2 ) ) )  =  ( 2  x.  ( ( ( N `  ( A G ( J S C ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 ) ) )

Proof of Theorem ip0i
StepHypRef Expression
1 2cn 11091 . . . 4  |-  2  e.  CC
2 ip1i.1 . . . . . . 7  |-  X  =  ( BaseSet `  U )
3 ip1i.6 . . . . . . 7  |-  N  =  ( normCV `  U )
4 ip1i.9 . . . . . . . 8  |-  U  e.  CPreHil
OLD
54phnvi 27671 . . . . . . 7  |-  U  e.  NrmCVec
6 ip1i.a . . . . . . . 8  |-  A  e.  X
7 ip0i.j . . . . . . . . 9  |-  J  e.  CC
8 ip1i.c . . . . . . . . 9  |-  C  e.  X
9 ip1i.4 . . . . . . . . . 10  |-  S  =  ( .sOLD `  U )
102, 9nvscl 27481 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  J  e.  CC  /\  C  e.  X )  ->  ( J S C )  e.  X )
115, 7, 8, 10mp3an 1424 . . . . . . . 8  |-  ( J S C )  e.  X
12 ip1i.2 . . . . . . . . 9  |-  G  =  ( +v `  U
)
132, 12nvgcl 27475 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  ( J S C )  e.  X )  ->  ( A G ( J S C ) )  e.  X )
145, 6, 11, 13mp3an 1424 . . . . . . 7  |-  ( A G ( J S C ) )  e.  X
152, 3, 5, 14nvcli 27517 . . . . . 6  |-  ( N `
 ( A G ( J S C ) ) )  e.  RR
1615recni 10052 . . . . 5  |-  ( N `
 ( A G ( J S C ) ) )  e.  CC
1716sqcli 12944 . . . 4  |-  ( ( N `  ( A G ( J S C ) ) ) ^ 2 )  e.  CC
187negcli 10349 . . . . . . . . 9  |-  -u J  e.  CC
192, 9nvscl 27481 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  -u J  e.  CC  /\  C  e.  X )  ->  ( -u J S C )  e.  X )
205, 18, 8, 19mp3an 1424 . . . . . . . 8  |-  ( -u J S C )  e.  X
212, 12nvgcl 27475 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  ( -u J S C )  e.  X )  -> 
( A G (
-u J S C ) )  e.  X
)
225, 6, 20, 21mp3an 1424 . . . . . . 7  |-  ( A G ( -u J S C ) )  e.  X
232, 3, 5, 22nvcli 27517 . . . . . 6  |-  ( N `
 ( A G ( -u J S C ) ) )  e.  RR
2423recni 10052 . . . . 5  |-  ( N `
 ( A G ( -u J S C ) ) )  e.  CC
2524sqcli 12944 . . . 4  |-  ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 )  e.  CC
261, 17, 25subdii 10479 . . 3  |-  ( 2  x.  ( ( ( N `  ( A G ( J S C ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 ) ) )  =  ( ( 2  x.  (
( N `  ( A G ( J S C ) ) ) ^ 2 ) )  -  ( 2  x.  ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 ) ) )
271, 17mulcli 10045 . . . 4  |-  ( 2  x.  ( ( N `
 ( A G ( J S C ) ) ) ^
2 ) )  e.  CC
281, 25mulcli 10045 . . . 4  |-  ( 2  x.  ( ( N `
 ( A G ( -u J S C ) ) ) ^ 2 ) )  e.  CC
29 ip1i.b . . . . . . . 8  |-  B  e.  X
302, 3, 5, 29nvcli 27517 . . . . . . 7  |-  ( N `
 B )  e.  RR
3130recni 10052 . . . . . 6  |-  ( N `
 B )  e.  CC
3231sqcli 12944 . . . . 5  |-  ( ( N `  B ) ^ 2 )  e.  CC
331, 32mulcli 10045 . . . 4  |-  ( 2  x.  ( ( N `
 B ) ^
2 ) )  e.  CC
34 pnpcan2 10321 . . . 4  |-  ( ( ( 2  x.  (
( N `  ( A G ( J S C ) ) ) ^ 2 ) )  e.  CC  /\  (
2  x.  ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 ) )  e.  CC  /\  (
2  x.  ( ( N `  B ) ^ 2 ) )  e.  CC )  -> 
( ( ( 2  x.  ( ( N `
 ( A G ( J S C ) ) ) ^
2 ) )  +  ( 2  x.  (
( N `  B
) ^ 2 ) ) )  -  (
( 2  x.  (
( N `  ( A G ( -u J S C ) ) ) ^ 2 ) )  +  ( 2  x.  ( ( N `  B ) ^ 2 ) ) ) )  =  ( ( 2  x.  ( ( N `
 ( A G ( J S C ) ) ) ^
2 ) )  -  ( 2  x.  (
( N `  ( A G ( -u J S C ) ) ) ^ 2 ) ) ) )
3527, 28, 33, 34mp3an 1424 . . 3  |-  ( ( ( 2  x.  (
( N `  ( A G ( J S C ) ) ) ^ 2 ) )  +  ( 2  x.  ( ( N `  B ) ^ 2 ) ) )  -  ( ( 2  x.  ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 ) )  +  ( 2  x.  ( ( N `
 B ) ^
2 ) ) ) )  =  ( ( 2  x.  ( ( N `  ( A G ( J S C ) ) ) ^ 2 ) )  -  ( 2  x.  ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 ) ) )
3626, 35eqtr4i 2647 . 2  |-  ( 2  x.  ( ( ( N `  ( A G ( J S C ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 ) ) )  =  ( ( ( 2  x.  ( ( N `  ( A G ( J S C ) ) ) ^ 2 ) )  +  ( 2  x.  ( ( N `
 B ) ^
2 ) ) )  -  ( ( 2  x.  ( ( N `
 ( A G ( -u J S C ) ) ) ^ 2 ) )  +  ( 2  x.  ( ( N `  B ) ^ 2 ) ) ) )
37 eqid 2622 . . . . . . . . . 10  |-  ( 1st `  U )  =  ( 1st `  U )
3837nvvc 27470 . . . . . . . . 9  |-  ( U  e.  NrmCVec  ->  ( 1st `  U
)  e.  CVecOLD )
3912vafval 27458 . . . . . . . . . 10  |-  G  =  ( 1st `  ( 1st `  U ) )
4039vcablo 27424 . . . . . . . . 9  |-  ( ( 1st `  U )  e.  CVecOLD  ->  G  e.  AbelOp )
415, 38, 40mp2b 10 . . . . . . . 8  |-  G  e. 
AbelOp
426, 29, 113pm3.2i 1239 . . . . . . . 8  |-  ( A  e.  X  /\  B  e.  X  /\  ( J S C )  e.  X )
432, 12bafval 27459 . . . . . . . . 9  |-  X  =  ran  G
4443ablo32 27403 . . . . . . . 8  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  ( J S C )  e.  X ) )  ->  ( ( A G B ) G ( J S C ) )  =  ( ( A G ( J S C ) ) G B ) )
4541, 42, 44mp2an 708 . . . . . . 7  |-  ( ( A G B ) G ( J S C ) )  =  ( ( A G ( J S C ) ) G B )
4645fveq2i 6194 . . . . . 6  |-  ( N `
 ( ( A G B ) G ( J S C ) ) )  =  ( N `  (
( A G ( J S C ) ) G B ) )
4746oveq1i 6660 . . . . 5  |-  ( ( N `  ( ( A G B ) G ( J S C ) ) ) ^ 2 )  =  ( ( N `  ( ( A G ( J S C ) ) G B ) ) ^ 2 )
48 neg1cn 11124 . . . . . . . . . 10  |-  -u 1  e.  CC
492, 9nvscl 27481 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  -u 1  e.  CC  /\  B  e.  X )  ->  ( -u 1 S B )  e.  X )
505, 48, 29, 49mp3an 1424 . . . . . . . . 9  |-  ( -u
1 S B )  e.  X
516, 50, 113pm3.2i 1239 . . . . . . . 8  |-  ( A  e.  X  /\  ( -u 1 S B )  e.  X  /\  ( J S C )  e.  X )
5243ablo32 27403 . . . . . . . 8  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  ( -u 1 S B )  e.  X  /\  ( J S C )  e.  X ) )  ->  ( ( A G ( -u 1 S B ) ) G ( J S C ) )  =  ( ( A G ( J S C ) ) G ( -u
1 S B ) ) )
5341, 51, 52mp2an 708 . . . . . . 7  |-  ( ( A G ( -u
1 S B ) ) G ( J S C ) )  =  ( ( A G ( J S C ) ) G ( -u 1 S B ) )
5453fveq2i 6194 . . . . . 6  |-  ( N `
 ( ( A G ( -u 1 S B ) ) G ( J S C ) ) )  =  ( N `  (
( A G ( J S C ) ) G ( -u
1 S B ) ) )
5554oveq1i 6660 . . . . 5  |-  ( ( N `  ( ( A G ( -u
1 S B ) ) G ( J S C ) ) ) ^ 2 )  =  ( ( N `
 ( ( A G ( J S C ) ) G ( -u 1 S B ) ) ) ^ 2 )
5647, 55oveq12i 6662 . . . 4  |-  ( ( ( N `  (
( A G B ) G ( J S C ) ) ) ^ 2 )  +  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( J S C ) ) ) ^
2 ) )  =  ( ( ( N `
 ( ( A G ( J S C ) ) G B ) ) ^
2 )  +  ( ( N `  (
( A G ( J S C ) ) G ( -u
1 S B ) ) ) ^ 2 ) )
572, 12, 9, 3phpar 27679 . . . . 5  |-  ( ( U  e.  CPreHil OLD  /\  ( A G ( J S C ) )  e.  X  /\  B  e.  X )  ->  (
( ( N `  ( ( A G ( J S C ) ) G B ) ) ^ 2 )  +  ( ( N `  ( ( A G ( J S C ) ) G ( -u 1 S B ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `
 ( A G ( J S C ) ) ) ^
2 )  +  ( ( N `  B
) ^ 2 ) ) ) )
584, 14, 29, 57mp3an 1424 . . . 4  |-  ( ( ( N `  (
( A G ( J S C ) ) G B ) ) ^ 2 )  +  ( ( N `
 ( ( A G ( J S C ) ) G ( -u 1 S B ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `
 ( A G ( J S C ) ) ) ^
2 )  +  ( ( N `  B
) ^ 2 ) ) )
591, 17, 32adddii 10050 . . . 4  |-  ( 2  x.  ( ( ( N `  ( A G ( J S C ) ) ) ^ 2 )  +  ( ( N `  B ) ^ 2 ) ) )  =  ( ( 2  x.  ( ( N `  ( A G ( J S C ) ) ) ^ 2 ) )  +  ( 2  x.  ( ( N `
 B ) ^
2 ) ) )
6056, 58, 593eqtri 2648 . . 3  |-  ( ( ( N `  (
( A G B ) G ( J S C ) ) ) ^ 2 )  +  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( J S C ) ) ) ^
2 ) )  =  ( ( 2  x.  ( ( N `  ( A G ( J S C ) ) ) ^ 2 ) )  +  ( 2  x.  ( ( N `
 B ) ^
2 ) ) )
616, 29, 203pm3.2i 1239 . . . . . . . 8  |-  ( A  e.  X  /\  B  e.  X  /\  ( -u J S C )  e.  X )
6243ablo32 27403 . . . . . . . 8  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  ( -u J S C )  e.  X ) )  ->  ( ( A G B ) G ( -u J S C ) )  =  ( ( A G ( -u J S C ) ) G B ) )
6341, 61, 62mp2an 708 . . . . . . 7  |-  ( ( A G B ) G ( -u J S C ) )  =  ( ( A G ( -u J S C ) ) G B )
6463fveq2i 6194 . . . . . 6  |-  ( N `
 ( ( A G B ) G ( -u J S C ) ) )  =  ( N `  ( ( A G ( -u J S C ) ) G B ) )
6564oveq1i 6660 . . . . 5  |-  ( ( N `  ( ( A G B ) G ( -u J S C ) ) ) ^ 2 )  =  ( ( N `  ( ( A G ( -u J S C ) ) G B ) ) ^
2 )
666, 50, 203pm3.2i 1239 . . . . . . . 8  |-  ( A  e.  X  /\  ( -u 1 S B )  e.  X  /\  ( -u J S C )  e.  X )
6743ablo32 27403 . . . . . . . 8  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  ( -u 1 S B )  e.  X  /\  ( -u J S C )  e.  X ) )  ->  ( ( A G ( -u 1 S B ) ) G ( -u J S C ) )  =  ( ( A G ( -u J S C ) ) G ( -u 1 S B ) ) )
6841, 66, 67mp2an 708 . . . . . . 7  |-  ( ( A G ( -u
1 S B ) ) G ( -u J S C ) )  =  ( ( A G ( -u J S C ) ) G ( -u 1 S B ) )
6968fveq2i 6194 . . . . . 6  |-  ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u J S C ) ) )  =  ( N `  ( ( A G ( -u J S C ) ) G ( -u 1 S B ) ) )
7069oveq1i 6660 . . . . 5  |-  ( ( N `  ( ( A G ( -u
1 S B ) ) G ( -u J S C ) ) ) ^ 2 )  =  ( ( N `
 ( ( A G ( -u J S C ) ) G ( -u 1 S B ) ) ) ^ 2 )
7165, 70oveq12i 6662 . . . 4  |-  ( ( ( N `  (
( A G B ) G ( -u J S C ) ) ) ^ 2 )  +  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u J S C ) ) ) ^ 2 ) )  =  ( ( ( N `  ( ( A G ( -u J S C ) ) G B ) ) ^ 2 )  +  ( ( N `  ( ( A G ( -u J S C ) ) G ( -u 1 S B ) ) ) ^ 2 ) )
722, 12, 9, 3phpar 27679 . . . . 5  |-  ( ( U  e.  CPreHil OLD  /\  ( A G ( -u J S C ) )  e.  X  /\  B  e.  X )  ->  (
( ( N `  ( ( A G ( -u J S C ) ) G B ) ) ^
2 )  +  ( ( N `  (
( A G (
-u J S C ) ) G (
-u 1 S B ) ) ) ^
2 ) )  =  ( 2  x.  (
( ( N `  ( A G ( -u J S C ) ) ) ^ 2 )  +  ( ( N `
 B ) ^
2 ) ) ) )
734, 22, 29, 72mp3an 1424 . . . 4  |-  ( ( ( N `  (
( A G (
-u J S C ) ) G B ) ) ^ 2 )  +  ( ( N `  ( ( A G ( -u J S C ) ) G ( -u 1 S B ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `
 ( A G ( -u J S C ) ) ) ^ 2 )  +  ( ( N `  B ) ^ 2 ) ) )
741, 25, 32adddii 10050 . . . 4  |-  ( 2  x.  ( ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 )  +  ( ( N `  B ) ^ 2 ) ) )  =  ( ( 2  x.  ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 ) )  +  ( 2  x.  ( ( N `
 B ) ^
2 ) ) )
7571, 73, 743eqtri 2648 . . 3  |-  ( ( ( N `  (
( A G B ) G ( -u J S C ) ) ) ^ 2 )  +  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u J S C ) ) ) ^ 2 ) )  =  ( ( 2  x.  ( ( N `
 ( A G ( -u J S C ) ) ) ^ 2 ) )  +  ( 2  x.  ( ( N `  B ) ^ 2 ) ) )
7660, 75oveq12i 6662 . 2  |-  ( ( ( ( N `  ( ( A G B ) G ( J S C ) ) ) ^ 2 )  +  ( ( N `  ( ( A G ( -u
1 S B ) ) G ( J S C ) ) ) ^ 2 ) )  -  ( ( ( N `  (
( A G B ) G ( -u J S C ) ) ) ^ 2 )  +  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u J S C ) ) ) ^ 2 ) ) )  =  ( ( ( 2  x.  (
( N `  ( A G ( J S C ) ) ) ^ 2 ) )  +  ( 2  x.  ( ( N `  B ) ^ 2 ) ) )  -  ( ( 2  x.  ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 ) )  +  ( 2  x.  ( ( N `
 B ) ^
2 ) ) ) )
772, 12nvgcl 27475 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A G B )  e.  X )
785, 6, 29, 77mp3an 1424 . . . . . . 7  |-  ( A G B )  e.  X
792, 12nvgcl 27475 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  ( A G B )  e.  X  /\  ( J S C )  e.  X )  ->  (
( A G B ) G ( J S C ) )  e.  X )
805, 78, 11, 79mp3an 1424 . . . . . 6  |-  ( ( A G B ) G ( J S C ) )  e.  X
812, 3, 5, 80nvcli 27517 . . . . 5  |-  ( N `
 ( ( A G B ) G ( J S C ) ) )  e.  RR
8281recni 10052 . . . 4  |-  ( N `
 ( ( A G B ) G ( J S C ) ) )  e.  CC
8382sqcli 12944 . . 3  |-  ( ( N `  ( ( A G B ) G ( J S C ) ) ) ^ 2 )  e.  CC
842, 12nvgcl 27475 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  ( -u 1 S B )  e.  X )  -> 
( A G (
-u 1 S B ) )  e.  X
)
855, 6, 50, 84mp3an 1424 . . . . . . 7  |-  ( A G ( -u 1 S B ) )  e.  X
862, 12nvgcl 27475 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  ( A G ( -u 1 S B ) )  e.  X  /\  ( J S C )  e.  X )  ->  (
( A G (
-u 1 S B ) ) G ( J S C ) )  e.  X )
875, 85, 11, 86mp3an 1424 . . . . . 6  |-  ( ( A G ( -u
1 S B ) ) G ( J S C ) )  e.  X
882, 3, 5, 87nvcli 27517 . . . . 5  |-  ( N `
 ( ( A G ( -u 1 S B ) ) G ( J S C ) ) )  e.  RR
8988recni 10052 . . . 4  |-  ( N `
 ( ( A G ( -u 1 S B ) ) G ( J S C ) ) )  e.  CC
9089sqcli 12944 . . 3  |-  ( ( N `  ( ( A G ( -u
1 S B ) ) G ( J S C ) ) ) ^ 2 )  e.  CC
912, 12nvgcl 27475 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  ( A G B )  e.  X  /\  ( -u J S C )  e.  X )  ->  (
( A G B ) G ( -u J S C ) )  e.  X )
925, 78, 20, 91mp3an 1424 . . . . . 6  |-  ( ( A G B ) G ( -u J S C ) )  e.  X
932, 3, 5, 92nvcli 27517 . . . . 5  |-  ( N `
 ( ( A G B ) G ( -u J S C ) ) )  e.  RR
9493recni 10052 . . . 4  |-  ( N `
 ( ( A G B ) G ( -u J S C ) ) )  e.  CC
9594sqcli 12944 . . 3  |-  ( ( N `  ( ( A G B ) G ( -u J S C ) ) ) ^ 2 )  e.  CC
962, 12nvgcl 27475 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  ( A G ( -u 1 S B ) )  e.  X  /\  ( -u J S C )  e.  X )  ->  (
( A G (
-u 1 S B ) ) G (
-u J S C ) )  e.  X
)
975, 85, 20, 96mp3an 1424 . . . . . 6  |-  ( ( A G ( -u
1 S B ) ) G ( -u J S C ) )  e.  X
982, 3, 5, 97nvcli 27517 . . . . 5  |-  ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u J S C ) ) )  e.  RR
9998recni 10052 . . . 4  |-  ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u J S C ) ) )  e.  CC
10099sqcli 12944 . . 3  |-  ( ( N `  ( ( A G ( -u
1 S B ) ) G ( -u J S C ) ) ) ^ 2 )  e.  CC
10183, 90, 95, 100addsub4i 10377 . 2  |-  ( ( ( ( N `  ( ( A G B ) G ( J S C ) ) ) ^ 2 )  +  ( ( N `  ( ( A G ( -u
1 S B ) ) G ( J S C ) ) ) ^ 2 ) )  -  ( ( ( N `  (
( A G B ) G ( -u J S C ) ) ) ^ 2 )  +  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u J S C ) ) ) ^ 2 ) ) )  =  ( ( ( ( N `  ( ( A G B ) G ( J S C ) ) ) ^ 2 )  -  ( ( N `  ( ( A G B ) G ( -u J S C ) ) ) ^ 2 ) )  +  ( ( ( N `  ( ( A G ( -u
1 S B ) ) G ( J S C ) ) ) ^ 2 )  -  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u J S C ) ) ) ^ 2 ) ) )
10236, 76, 1013eqtr2ri 2651 1  |-  ( ( ( ( N `  ( ( A G B ) G ( J S C ) ) ) ^ 2 )  -  ( ( N `  ( ( A G B ) G ( -u J S C ) ) ) ^ 2 ) )  +  ( ( ( N `  ( ( A G ( -u
1 S B ) ) G ( J S C ) ) ) ^ 2 )  -  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u J S C ) ) ) ^ 2 ) ) )  =  ( 2  x.  ( ( ( N `  ( A G ( J S C ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 ) ) )
Colors of variables: wff setvar class
Syntax hints:    /\ w3a 1037    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   1stc1st 7166   CCcc 9934   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266   -ucneg 10267   2c2 11070   ^cexp 12860   AbelOpcablo 27398   CVecOLDcvc 27413   NrmCVeccnv 27439   +vcpv 27440   BaseSetcba 27441   .sOLDcns 27442   normCVcnmcv 27445   .iOLDcdip 27555   CPreHil OLDccphlo 27667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-exp 12861  df-grpo 27347  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-nmcv 27455  df-ph 27668
This theorem is referenced by:  ip1ilem  27681
  Copyright terms: Public domain W3C validator