Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pl42N Structured version   Visualization version   Unicode version

Theorem pl42N 35269
Description: Law holding in a Hilbert lattice that fails in orthomodular lattice L42 (Figure 7 in [MegPav2000] p. 2366). (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pl42.b  |-  B  =  ( Base `  K
)
pl42.l  |-  .<_  =  ( le `  K )
pl42.j  |-  .\/  =  ( join `  K )
pl42.m  |-  ./\  =  ( meet `  K )
pl42.o  |-  ._|_  =  ( oc `  K )
Assertion
Ref Expression
pl42N  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) )  ->  ( (
( ( X  .\/  Y )  ./\  Z )  .\/  W )  ./\  V
)  .<_  ( ( X 
.\/  Y )  .\/  ( ( X  .\/  W )  ./\  ( Y  .\/  V ) ) ) ) )

Proof of Theorem pl42N
StepHypRef Expression
1 pl42.b . . 3  |-  B  =  ( Base `  K
)
2 pl42.l . . 3  |-  .<_  =  ( le `  K )
3 pl42.j . . 3  |-  .\/  =  ( join `  K )
4 pl42.m . . 3  |-  ./\  =  ( meet `  K )
5 pl42.o . . 3  |-  ._|_  =  ( oc `  K )
6 eqid 2622 . . 3  |-  ( pmap `  K )  =  (
pmap `  K )
7 eqid 2622 . . 3  |-  ( +P `  K )  =  ( +P `  K )
81, 2, 3, 4, 5, 6, 7pl42lem4N 35268 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) )  ->  ( ( pmap `  K ) `  ( ( ( ( X  .\/  Y ) 
./\  Z )  .\/  W )  ./\  V )
)  C_  ( ( pmap `  K ) `  ( ( X  .\/  Y )  .\/  ( ( X  .\/  W ) 
./\  ( Y  .\/  V ) ) ) ) ) )
9 simpl1 1064 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  K  e.  HL )
10 hllat 34650 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
119, 10syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  K  e.  Lat )
12 simpl2 1065 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  X  e.  B )
13 simpl3 1066 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  Y  e.  B )
141, 3latjcl 17051 . . . . . . 7  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  e.  B )
1511, 12, 13, 14syl3anc 1326 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  ( X  .\/  Y )  e.  B )
16 simpr1 1067 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  Z  e.  B )
171, 4latmcl 17052 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( X  .\/  Y )  e.  B  /\  Z  e.  B )  ->  (
( X  .\/  Y
)  ./\  Z )  e.  B )
1811, 15, 16, 17syl3anc 1326 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( X  .\/  Y
)  ./\  Z )  e.  B )
19 simpr2 1068 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  W  e.  B )
201, 3latjcl 17051 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( X  .\/  Y )  ./\  Z )  e.  B  /\  W  e.  B )  ->  (
( ( X  .\/  Y )  ./\  Z )  .\/  W )  e.  B
)
2111, 18, 19, 20syl3anc 1326 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( ( X  .\/  Y )  ./\  Z )  .\/  W )  e.  B
)
22 simpr3 1069 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  V  e.  B )
231, 4latmcl 17052 . . . 4  |-  ( ( K  e.  Lat  /\  ( ( ( X 
.\/  Y )  ./\  Z )  .\/  W )  e.  B  /\  V  e.  B )  ->  (
( ( ( X 
.\/  Y )  ./\  Z )  .\/  W ) 
./\  V )  e.  B )
2411, 21, 22, 23syl3anc 1326 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( ( ( X 
.\/  Y )  ./\  Z )  .\/  W ) 
./\  V )  e.  B )
251, 3latjcl 17051 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  W  e.  B )  ->  ( X  .\/  W
)  e.  B )
2611, 12, 19, 25syl3anc 1326 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  ( X  .\/  W )  e.  B )
271, 3latjcl 17051 . . . . . 6  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  V  e.  B )  ->  ( Y  .\/  V
)  e.  B )
2811, 13, 22, 27syl3anc 1326 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  ( Y  .\/  V )  e.  B )
291, 4latmcl 17052 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  .\/  W )  e.  B  /\  ( Y  .\/  V )  e.  B )  ->  (
( X  .\/  W
)  ./\  ( Y  .\/  V ) )  e.  B )
3011, 26, 28, 29syl3anc 1326 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( X  .\/  W
)  ./\  ( Y  .\/  V ) )  e.  B )
311, 3latjcl 17051 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  .\/  Y )  e.  B  /\  (
( X  .\/  W
)  ./\  ( Y  .\/  V ) )  e.  B )  ->  (
( X  .\/  Y
)  .\/  ( ( X  .\/  W )  ./\  ( Y  .\/  V ) ) )  e.  B
)
3211, 15, 30, 31syl3anc 1326 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( X  .\/  Y
)  .\/  ( ( X  .\/  W )  ./\  ( Y  .\/  V ) ) )  e.  B
)
331, 2, 6pmaple 35047 . . 3  |-  ( ( K  e.  HL  /\  ( ( ( ( X  .\/  Y ) 
./\  Z )  .\/  W )  ./\  V )  e.  B  /\  (
( X  .\/  Y
)  .\/  ( ( X  .\/  W )  ./\  ( Y  .\/  V ) ) )  e.  B
)  ->  ( (
( ( ( X 
.\/  Y )  ./\  Z )  .\/  W ) 
./\  V )  .<_  ( ( X  .\/  Y )  .\/  ( ( X  .\/  W ) 
./\  ( Y  .\/  V ) ) )  <->  ( ( pmap `  K ) `  ( ( ( ( X  .\/  Y ) 
./\  Z )  .\/  W )  ./\  V )
)  C_  ( ( pmap `  K ) `  ( ( X  .\/  Y )  .\/  ( ( X  .\/  W ) 
./\  ( Y  .\/  V ) ) ) ) ) )
349, 24, 32, 33syl3anc 1326 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( ( ( ( X  .\/  Y ) 
./\  Z )  .\/  W )  ./\  V )  .<_  ( ( X  .\/  Y )  .\/  ( ( X  .\/  W ) 
./\  ( Y  .\/  V ) ) )  <->  ( ( pmap `  K ) `  ( ( ( ( X  .\/  Y ) 
./\  Z )  .\/  W )  ./\  V )
)  C_  ( ( pmap `  K ) `  ( ( X  .\/  Y )  .\/  ( ( X  .\/  W ) 
./\  ( Y  .\/  V ) ) ) ) ) )
358, 34sylibrd 249 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) )  ->  ( (
( ( X  .\/  Y )  ./\  Z )  .\/  W )  ./\  V
)  .<_  ( ( X 
.\/  Y )  .\/  ( ( X  .\/  W )  ./\  ( Y  .\/  V ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   occoc 15949   joincjn 16944   meetcmee 16945   Latclat 17045   HLchlt 34637   pmapcpmap 34783   +Pcpadd 35081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-undef 7399  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-polarityN 35189  df-psubclN 35221
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator