Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmaple Structured version   Visualization version   Unicode version

Theorem pmaple 35047
Description: The projective map of a Hilbert lattice preserves ordering. Part of Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 22-Oct-2011.)
Hypotheses
Ref Expression
pmaple.b  |-  B  =  ( Base `  K
)
pmaple.l  |-  .<_  =  ( le `  K )
pmaple.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
pmaple  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  ( M `  X )  C_  ( M `  Y )
) )

Proof of Theorem pmaple
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 hlpos 34652 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Poset )
2 pmaple.b . . . . . . . . . 10  |-  B  =  ( Base `  K
)
3 eqid 2622 . . . . . . . . . 10  |-  ( Atoms `  K )  =  (
Atoms `  K )
42, 3atbase 34576 . . . . . . . . 9  |-  ( p  e.  ( Atoms `  K
)  ->  p  e.  B )
5 pmaple.l . . . . . . . . . . . . . . 15  |-  .<_  =  ( le `  K )
62, 5postr 16953 . . . . . . . . . . . . . 14  |-  ( ( K  e.  Poset  /\  (
p  e.  B  /\  X  e.  B  /\  Y  e.  B )
)  ->  ( (
p  .<_  X  /\  X  .<_  Y )  ->  p  .<_  Y ) )
76exp4b 632 . . . . . . . . . . . . 13  |-  ( K  e.  Poset  ->  ( (
p  e.  B  /\  X  e.  B  /\  Y  e.  B )  ->  ( p  .<_  X  -> 
( X  .<_  Y  ->  p  .<_  Y ) ) ) )
873expd 1284 . . . . . . . . . . . 12  |-  ( K  e.  Poset  ->  ( p  e.  B  ->  ( X  e.  B  ->  ( Y  e.  B  ->  ( p  .<_  X  ->  ( X  .<_  Y  ->  p 
.<_  Y ) ) ) ) ) )
98com23 86 . . . . . . . . . . 11  |-  ( K  e.  Poset  ->  ( X  e.  B  ->  ( p  e.  B  ->  ( Y  e.  B  ->  ( p  .<_  X  ->  ( X  .<_  Y  ->  p 
.<_  Y ) ) ) ) ) )
109com34 91 . . . . . . . . . 10  |-  ( K  e.  Poset  ->  ( X  e.  B  ->  ( Y  e.  B  ->  (
p  e.  B  -> 
( p  .<_  X  -> 
( X  .<_  Y  ->  p  .<_  Y ) ) ) ) ) )
11103imp 1256 . . . . . . . . 9  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  (
p  e.  B  -> 
( p  .<_  X  -> 
( X  .<_  Y  ->  p  .<_  Y ) ) ) )
124, 11syl5 34 . . . . . . . 8  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  (
p  e.  ( Atoms `  K )  ->  (
p  .<_  X  ->  ( X  .<_  Y  ->  p  .<_  Y ) ) ) )
1312com34 91 . . . . . . 7  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  (
p  e.  ( Atoms `  K )  ->  ( X  .<_  Y  ->  (
p  .<_  X  ->  p  .<_  Y ) ) ) )
1413com23 86 . . . . . 6  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  ->  (
p  e.  ( Atoms `  K )  ->  (
p  .<_  X  ->  p  .<_  Y ) ) ) )
1514ralrimdv 2968 . . . . 5  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  ->  A. p  e.  ( Atoms `  K )
( p  .<_  X  ->  p  .<_  Y ) ) )
161, 15syl3an1 1359 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  ->  A. p  e.  ( Atoms `  K ) ( p  .<_  X  ->  p 
.<_  Y ) ) )
17 ss2rab 3678 . . . 4  |-  ( { p  e.  ( Atoms `  K )  |  p 
.<_  X }  C_  { p  e.  ( Atoms `  K )  |  p  .<_  Y }  <->  A. p  e.  ( Atoms `  K ) ( p 
.<_  X  ->  p  .<_  Y ) )
1816, 17syl6ibr 242 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  ->  { p  e.  ( Atoms `  K )  |  p  .<_  X }  C_ 
{ p  e.  (
Atoms `  K )  |  p  .<_  Y }
) )
19 hlclat 34645 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  CLat )
20 ssrab2 3687 . . . . . . . . 9  |-  { p  e.  ( Atoms `  K )  |  p  .<_  Y }  C_  ( Atoms `  K )
212, 3atssbase 34577 . . . . . . . . 9  |-  ( Atoms `  K )  C_  B
2220, 21sstri 3612 . . . . . . . 8  |-  { p  e.  ( Atoms `  K )  |  p  .<_  Y }  C_  B
23 eqid 2622 . . . . . . . . 9  |-  ( lub `  K )  =  ( lub `  K )
242, 5, 23lubss 17121 . . . . . . . 8  |-  ( ( K  e.  CLat  /\  {
p  e.  ( Atoms `  K )  |  p 
.<_  Y }  C_  B  /\  { p  e.  (
Atoms `  K )  |  p  .<_  X }  C_ 
{ p  e.  (
Atoms `  K )  |  p  .<_  Y }
)  ->  ( ( lub `  K ) `  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)  .<_  ( ( lub `  K ) `  {
p  e.  ( Atoms `  K )  |  p 
.<_  Y } ) )
2522, 24mp3an2 1412 . . . . . . 7  |-  ( ( K  e.  CLat  /\  {
p  e.  ( Atoms `  K )  |  p 
.<_  X }  C_  { p  e.  ( Atoms `  K )  |  p  .<_  Y }
)  ->  ( ( lub `  K ) `  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)  .<_  ( ( lub `  K ) `  {
p  e.  ( Atoms `  K )  |  p 
.<_  Y } ) )
2625ex 450 . . . . . 6  |-  ( K  e.  CLat  ->  ( { p  e.  ( Atoms `  K )  |  p 
.<_  X }  C_  { p  e.  ( Atoms `  K )  |  p  .<_  Y }  ->  ( ( lub `  K
) `  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)  .<_  ( ( lub `  K ) `  {
p  e.  ( Atoms `  K )  |  p 
.<_  Y } ) ) )
2719, 26syl 17 . . . . 5  |-  ( K  e.  HL  ->  ( { p  e.  ( Atoms `  K )  |  p  .<_  X }  C_ 
{ p  e.  (
Atoms `  K )  |  p  .<_  Y }  ->  ( ( lub `  K
) `  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)  .<_  ( ( lub `  K ) `  {
p  e.  ( Atoms `  K )  |  p 
.<_  Y } ) ) )
28273ad2ant1 1082 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( { p  e.  ( Atoms `  K )  |  p  .<_  X }  C_ 
{ p  e.  (
Atoms `  K )  |  p  .<_  Y }  ->  ( ( lub `  K
) `  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)  .<_  ( ( lub `  K ) `  {
p  e.  ( Atoms `  K )  |  p 
.<_  Y } ) ) )
29 hlomcmat 34651 . . . . . . 7  |-  ( K  e.  HL  ->  ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat
) )
30293ad2ant1 1082 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat ) )
31 simp2 1062 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
322, 5, 23, 3atlatmstc 34606 . . . . . 6  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  ->  (
( lub `  K
) `  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)  =  X )
3330, 31, 32syl2anc 693 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( lub `  K
) `  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)  =  X )
34 simp3 1063 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
352, 5, 23, 3atlatmstc 34606 . . . . . 6  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  Y  e.  B )  ->  (
( lub `  K
) `  { p  e.  ( Atoms `  K )  |  p  .<_  Y }
)  =  Y )
3630, 34, 35syl2anc 693 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( lub `  K
) `  { p  e.  ( Atoms `  K )  |  p  .<_  Y }
)  =  Y )
3733, 36breq12d 4666 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( lub `  K ) `  {
p  e.  ( Atoms `  K )  |  p 
.<_  X } )  .<_  ( ( lub `  K
) `  { p  e.  ( Atoms `  K )  |  p  .<_  Y }
)  <->  X  .<_  Y ) )
3828, 37sylibd 229 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( { p  e.  ( Atoms `  K )  |  p  .<_  X }  C_ 
{ p  e.  (
Atoms `  K )  |  p  .<_  Y }  ->  X  .<_  Y )
)
3918, 38impbid 202 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  { p  e.  ( Atoms `  K )  |  p  .<_  X }  C_ 
{ p  e.  (
Atoms `  K )  |  p  .<_  Y }
) )
40 pmaple.m . . . . 5  |-  M  =  ( pmap `  K
)
412, 5, 3, 40pmapval 35043 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( M `  X
)  =  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)
42413adant3 1081 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( M `  X
)  =  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)
432, 5, 3, 40pmapval 35043 . . . 4  |-  ( ( K  e.  HL  /\  Y  e.  B )  ->  ( M `  Y
)  =  { p  e.  ( Atoms `  K )  |  p  .<_  Y }
)
44433adant2 1080 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( M `  Y
)  =  { p  e.  ( Atoms `  K )  |  p  .<_  Y }
)
4542, 44sseq12d 3634 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( M `  X )  C_  ( M `  Y )  <->  { p  e.  ( Atoms `  K )  |  p 
.<_  X }  C_  { p  e.  ( Atoms `  K )  |  p  .<_  Y }
) )
4639, 45bitr4d 271 1  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  ( M `  X )  C_  ( M `  Y )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    C_ wss 3574   class class class wbr 4653   ` cfv 5888   Basecbs 15857   lecple 15948   Posetcpo 16940   lubclub 16942   CLatccla 17107   OMLcoml 34462   Atomscatm 34550   AtLatcal 34551   HLchlt 34637   pmapcpmap 34783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-pmap 34790
This theorem is referenced by:  pmap11  35048  hlmod1i  35142  paddunN  35213  pmapojoinN  35254  pl42N  35269
  Copyright terms: Public domain W3C validator