| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pmaple | Structured version Visualization version Unicode version | ||
| Description: The projective map of a Hilbert lattice preserves ordering. Part of Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| pmaple.b |
|
| pmaple.l |
|
| pmaple.m |
|
| Ref | Expression |
|---|---|
| pmaple |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlpos 34652 |
. . . . 5
| |
| 2 | pmaple.b |
. . . . . . . . . 10
| |
| 3 | eqid 2622 |
. . . . . . . . . 10
| |
| 4 | 2, 3 | atbase 34576 |
. . . . . . . . 9
|
| 5 | pmaple.l |
. . . . . . . . . . . . . . 15
| |
| 6 | 2, 5 | postr 16953 |
. . . . . . . . . . . . . 14
|
| 7 | 6 | exp4b 632 |
. . . . . . . . . . . . 13
|
| 8 | 7 | 3expd 1284 |
. . . . . . . . . . . 12
|
| 9 | 8 | com23 86 |
. . . . . . . . . . 11
|
| 10 | 9 | com34 91 |
. . . . . . . . . 10
|
| 11 | 10 | 3imp 1256 |
. . . . . . . . 9
|
| 12 | 4, 11 | syl5 34 |
. . . . . . . 8
|
| 13 | 12 | com34 91 |
. . . . . . 7
|
| 14 | 13 | com23 86 |
. . . . . 6
|
| 15 | 14 | ralrimdv 2968 |
. . . . 5
|
| 16 | 1, 15 | syl3an1 1359 |
. . . 4
|
| 17 | ss2rab 3678 |
. . . 4
| |
| 18 | 16, 17 | syl6ibr 242 |
. . 3
|
| 19 | hlclat 34645 |
. . . . . 6
| |
| 20 | ssrab2 3687 |
. . . . . . . . 9
| |
| 21 | 2, 3 | atssbase 34577 |
. . . . . . . . 9
|
| 22 | 20, 21 | sstri 3612 |
. . . . . . . 8
|
| 23 | eqid 2622 |
. . . . . . . . 9
| |
| 24 | 2, 5, 23 | lubss 17121 |
. . . . . . . 8
|
| 25 | 22, 24 | mp3an2 1412 |
. . . . . . 7
|
| 26 | 25 | ex 450 |
. . . . . 6
|
| 27 | 19, 26 | syl 17 |
. . . . 5
|
| 28 | 27 | 3ad2ant1 1082 |
. . . 4
|
| 29 | hlomcmat 34651 |
. . . . . . 7
| |
| 30 | 29 | 3ad2ant1 1082 |
. . . . . 6
|
| 31 | simp2 1062 |
. . . . . 6
| |
| 32 | 2, 5, 23, 3 | atlatmstc 34606 |
. . . . . 6
|
| 33 | 30, 31, 32 | syl2anc 693 |
. . . . 5
|
| 34 | simp3 1063 |
. . . . . 6
| |
| 35 | 2, 5, 23, 3 | atlatmstc 34606 |
. . . . . 6
|
| 36 | 30, 34, 35 | syl2anc 693 |
. . . . 5
|
| 37 | 33, 36 | breq12d 4666 |
. . . 4
|
| 38 | 28, 37 | sylibd 229 |
. . 3
|
| 39 | 18, 38 | impbid 202 |
. 2
|
| 40 | pmaple.m |
. . . . 5
| |
| 41 | 2, 5, 3, 40 | pmapval 35043 |
. . . 4
|
| 42 | 41 | 3adant3 1081 |
. . 3
|
| 43 | 2, 5, 3, 40 | pmapval 35043 |
. . . 4
|
| 44 | 43 | 3adant2 1080 |
. . 3
|
| 45 | 42, 44 | sseq12d 3634 |
. 2
|
| 46 | 39, 45 | bitr4d 271 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-pmap 34790 |
| This theorem is referenced by: pmap11 35048 hlmod1i 35142 paddunN 35213 pmapojoinN 35254 pl42N 35269 |
| Copyright terms: Public domain | W3C validator |