MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pospo Structured version   Visualization version   Unicode version

Theorem pospo 16973
Description: Write a poset structure in terms of the proper-class poset predicate (strict less than version). (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
pospo.b  |-  B  =  ( Base `  K
)
pospo.l  |-  .<_  =  ( le `  K )
pospo.s  |-  .<  =  ( lt `  K )
Assertion
Ref Expression
pospo  |-  ( K  e.  V  ->  ( K  e.  Poset  <->  (  .<  Po  B  /\  (  _I  |`  B )  C_  .<_  ) ) )

Proof of Theorem pospo
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pospo.s . . . . 5  |-  .<  =  ( lt `  K )
21pltirr 16963 . . . 4  |-  ( ( K  e.  Poset  /\  x  e.  B )  ->  -.  x  .<  x )
3 pospo.b . . . . 5  |-  B  =  ( Base `  K
)
43, 1plttr 16970 . . . 4  |-  ( ( K  e.  Poset  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x  .<  y  /\  y  .<  z )  ->  x  .<  z ) )
52, 4ispod 5043 . . 3  |-  ( K  e.  Poset  ->  .<  Po  B
)
6 relres 5426 . . . . 5  |-  Rel  (  _I  |`  B )
76a1i 11 . . . 4  |-  ( K  e.  Poset  ->  Rel  (  _I  |`  B ) )
8 opabresid 5455 . . . . . . 7  |-  { <. x ,  y >.  |  ( x  e.  B  /\  y  =  x ) }  =  (  _I  |`  B )
98eleq2i 2693 . . . . . 6  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  B  /\  y  =  x ) }  <->  <. x ,  y >.  e.  (  _I  |`  B ) )
10 opabid 4982 . . . . . 6  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  B  /\  y  =  x ) }  <->  ( x  e.  B  /\  y  =  x ) )
119, 10bitr3i 266 . . . . 5  |-  ( <.
x ,  y >.  e.  (  _I  |`  B )  <-> 
( x  e.  B  /\  y  =  x
) )
12 pospo.l . . . . . . . 8  |-  .<_  =  ( le `  K )
133, 12posref 16951 . . . . . . 7  |-  ( ( K  e.  Poset  /\  x  e.  B )  ->  x  .<_  x )
14 df-br 4654 . . . . . . . 8  |-  ( x 
.<_  y  <->  <. x ,  y
>.  e.  .<_  )
15 breq2 4657 . . . . . . . 8  |-  ( y  =  x  ->  (
x  .<_  y  <->  x  .<_  x ) )
1614, 15syl5bbr 274 . . . . . . 7  |-  ( y  =  x  ->  ( <. x ,  y >.  e.  .<_ 
<->  x  .<_  x )
)
1713, 16syl5ibrcom 237 . . . . . 6  |-  ( ( K  e.  Poset  /\  x  e.  B )  ->  (
y  =  x  ->  <. x ,  y >.  e.  .<_  ) )
1817expimpd 629 . . . . 5  |-  ( K  e.  Poset  ->  ( (
x  e.  B  /\  y  =  x )  -> 
<. x ,  y >.  e.  .<_  ) )
1911, 18syl5bi 232 . . . 4  |-  ( K  e.  Poset  ->  ( <. x ,  y >.  e.  (  _I  |`  B )  -> 
<. x ,  y >.  e.  .<_  ) )
207, 19relssdv 5212 . . 3  |-  ( K  e.  Poset  ->  (  _I  |`  B )  C_  .<_  )
215, 20jca 554 . 2  |-  ( K  e.  Poset  ->  (  .<  Po  B  /\  (  _I  |`  B )  C_  .<_  ) )
22 elex 3212 . . . . 5  |-  ( K  e.  V  ->  K  e.  _V )
2322adantr 481 . . . 4  |-  ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  ->  K  e.  _V )
243a1i 11 . . . 4  |-  ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  ->  B  =  ( Base `  K ) )
2512a1i 11 . . . 4  |-  ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  ->  .<_  =  ( le `  K ) )
26 equid 1939 . . . . . 6  |-  x  =  x
27 simpr 477 . . . . . . 7  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B )  ->  x  e.  B )
28 resieq 5407 . . . . . . 7  |-  ( ( x  e.  B  /\  x  e.  B )  ->  ( x (  _I  |`  B ) x  <->  x  =  x ) )
2927, 27, 28syl2anc 693 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B )  ->  ( x (  _I  |`  B ) x  <->  x  =  x ) )
3026, 29mpbiri 248 . . . . 5  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B )  ->  x (  _I  |`  B ) x )
31 simplrr 801 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B )  ->  (  _I  |`  B ) 
C_  .<_  )
3231ssbrd 4696 . . . . 5  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B )  ->  ( x (  _I  |`  B ) x  ->  x  .<_  x ) )
3330, 32mpd 15 . . . 4  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B )  ->  x  .<_  x )
343, 12, 1pleval2i 16964 . . . . . 6  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x  .<_  y  -> 
( x  .<  y  \/  x  =  y
) ) )
35343adant1 1079 . . . . 5  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .<_  y  -> 
( x  .<  y  \/  x  =  y
) ) )
363, 12, 1pleval2i 16964 . . . . . . 7  |-  ( ( y  e.  B  /\  x  e.  B )  ->  ( y  .<_  x  -> 
( y  .<  x  \/  y  =  x
) ) )
3736ancoms 469 . . . . . 6  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( y  .<_  x  -> 
( y  .<  x  \/  y  =  x
) ) )
38373adant1 1079 . . . . 5  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B  /\  y  e.  B )  ->  ( y  .<_  x  -> 
( y  .<  x  \/  y  =  x
) ) )
39 simprl 794 . . . . . . . 8  |-  ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  ->  .<  Po  B )
40 po2nr 5048 . . . . . . . . 9  |-  ( ( 
.<  Po  B  /\  (
x  e.  B  /\  y  e.  B )
)  ->  -.  (
x  .<  y  /\  y  .<  x ) )
41403impb 1260 . . . . . . . 8  |-  ( ( 
.<  Po  B  /\  x  e.  B  /\  y  e.  B )  ->  -.  ( x  .<  y  /\  y  .<  x ) )
4239, 41syl3an1 1359 . . . . . . 7  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B  /\  y  e.  B )  ->  -.  ( x  .<  y  /\  y  .<  x
) )
4342pm2.21d 118 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B  /\  y  e.  B )  ->  ( ( x  .<  y  /\  y  .<  x
)  ->  x  =  y ) )
44 simpl 473 . . . . . . 7  |-  ( ( x  =  y  /\  y  .<  x )  ->  x  =  y )
4544a1i 11 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B  /\  y  e.  B )  ->  ( ( x  =  y  /\  y  .<  x )  ->  x  =  y ) )
46 simpr 477 . . . . . . . 8  |-  ( ( x  .<  y  /\  y  =  x )  ->  y  =  x )
4746eqcomd 2628 . . . . . . 7  |-  ( ( x  .<  y  /\  y  =  x )  ->  x  =  y )
4847a1i 11 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B  /\  y  e.  B )  ->  ( ( x  .<  y  /\  y  =  x )  ->  x  =  y ) )
49 simpl 473 . . . . . . 7  |-  ( ( x  =  y  /\  y  =  x )  ->  x  =  y )
5049a1i 11 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B  /\  y  e.  B )  ->  ( ( x  =  y  /\  y  =  x )  ->  x  =  y ) )
5143, 45, 48, 50ccased 988 . . . . 5  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B  /\  y  e.  B )  ->  ( ( ( x 
.<  y  \/  x  =  y )  /\  ( y  .<  x  \/  y  =  x
) )  ->  x  =  y ) )
5235, 38, 51syl2and 500 . . . 4  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B  /\  y  e.  B )  ->  ( ( x  .<_  y  /\  y  .<_  x )  ->  x  =  y ) )
53 simpr1 1067 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  x  e.  B )
54 simpr2 1068 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  y  e.  B )
5553, 54, 34syl2anc 693 . . . . 5  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
x  .<_  y  ->  (
x  .<  y  \/  x  =  y ) ) )
56 simpr3 1069 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  z  e.  B )
573, 12, 1pleval2i 16964 . . . . . 6  |-  ( ( y  e.  B  /\  z  e.  B )  ->  ( y  .<_  z  -> 
( y  .<  z  \/  y  =  z
) ) )
5854, 56, 57syl2anc 693 . . . . 5  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
y  .<_  z  ->  (
y  .<  z  \/  y  =  z ) ) )
59 potr 5047 . . . . . . . 8  |-  ( ( 
.<  Po  B  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x  .<  y  /\  y  .<  z )  ->  x  .<  z ) )
6039, 59sylan 488 . . . . . . 7  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .<  y  /\  y  .<  z )  ->  x  .<  z
) )
61 simpll 790 . . . . . . . 8  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  K  e.  V )
6212, 1pltle 16961 . . . . . . . 8  |-  ( ( K  e.  V  /\  x  e.  B  /\  z  e.  B )  ->  ( x  .<  z  ->  x  .<_  z )
)
6361, 53, 56, 62syl3anc 1326 . . . . . . 7  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
x  .<  z  ->  x  .<_  z ) )
6460, 63syld 47 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .<  y  /\  y  .<  z )  ->  x  .<_  z ) )
65 breq1 4656 . . . . . . . 8  |-  ( x  =  y  ->  (
x  .<  z  <->  y  .<  z ) )
6665biimpar 502 . . . . . . 7  |-  ( ( x  =  y  /\  y  .<  z )  ->  x  .<  z )
6766, 63syl5 34 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  =  y  /\  y  .<  z
)  ->  x  .<_  z ) )
68 breq2 4657 . . . . . . . 8  |-  ( y  =  z  ->  (
x  .<  y  <->  x  .<  z ) )
6968biimpac 503 . . . . . . 7  |-  ( ( x  .<  y  /\  y  =  z )  ->  x  .<  z )
7069, 63syl5 34 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .<  y  /\  y  =  z
)  ->  x  .<_  z ) )
7153, 33syldan 487 . . . . . . 7  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  x  .<_  x )
72 eqtr 2641 . . . . . . . 8  |-  ( ( x  =  y  /\  y  =  z )  ->  x  =  z )
7372breq2d 4665 . . . . . . 7  |-  ( ( x  =  y  /\  y  =  z )  ->  ( x  .<_  x  <->  x  .<_  z ) )
7471, 73syl5ibcom 235 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  =  y  /\  y  =  z )  ->  x  .<_  z ) )
7564, 67, 70, 74ccased 988 . . . . 5  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( ( x  .<  y  \/  x  =  y )  /\  ( y 
.<  z  \/  y  =  z ) )  ->  x  .<_  z ) )
7655, 58, 75syl2and 500 . . . 4  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z ) )
7723, 24, 25, 33, 52, 76isposd 16955 . . 3  |-  ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  ->  K  e.  Poset )
7877ex 450 . 2  |-  ( K  e.  V  ->  (
(  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  )  ->  K  e.  Poset ) )
7921, 78impbid2 216 1  |-  ( K  e.  V  ->  ( K  e.  Poset  <->  (  .<  Po  B  /\  (  _I  |`  B )  C_  .<_  ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   <.cop 4183   class class class wbr 4653   {copab 4712    _I cid 5023    Po wpo 5033    |` cres 5116   Rel wrel 5119   ` cfv 5888   Basecbs 15857   lecple 15948   Posetcpo 16940   ltcplt 16941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-preset 16928  df-poset 16946  df-plt 16958
This theorem is referenced by:  tosso  17036
  Copyright terms: Public domain W3C validator