| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pospo | Structured version Visualization version Unicode version | ||
| Description: Write a poset structure in terms of the proper-class poset predicate (strict less than version). (Contributed by Mario Carneiro, 8-Feb-2015.) |
| Ref | Expression |
|---|---|
| pospo.b |
|
| pospo.l |
|
| pospo.s |
|
| Ref | Expression |
|---|---|
| pospo |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pospo.s |
. . . . 5
| |
| 2 | 1 | pltirr 16963 |
. . . 4
|
| 3 | pospo.b |
. . . . 5
| |
| 4 | 3, 1 | plttr 16970 |
. . . 4
|
| 5 | 2, 4 | ispod 5043 |
. . 3
|
| 6 | relres 5426 |
. . . . 5
| |
| 7 | 6 | a1i 11 |
. . . 4
|
| 8 | opabresid 5455 |
. . . . . . 7
| |
| 9 | 8 | eleq2i 2693 |
. . . . . 6
|
| 10 | opabid 4982 |
. . . . . 6
| |
| 11 | 9, 10 | bitr3i 266 |
. . . . 5
|
| 12 | pospo.l |
. . . . . . . 8
| |
| 13 | 3, 12 | posref 16951 |
. . . . . . 7
|
| 14 | df-br 4654 |
. . . . . . . 8
| |
| 15 | breq2 4657 |
. . . . . . . 8
| |
| 16 | 14, 15 | syl5bbr 274 |
. . . . . . 7
|
| 17 | 13, 16 | syl5ibrcom 237 |
. . . . . 6
|
| 18 | 17 | expimpd 629 |
. . . . 5
|
| 19 | 11, 18 | syl5bi 232 |
. . . 4
|
| 20 | 7, 19 | relssdv 5212 |
. . 3
|
| 21 | 5, 20 | jca 554 |
. 2
|
| 22 | elex 3212 |
. . . . 5
| |
| 23 | 22 | adantr 481 |
. . . 4
|
| 24 | 3 | a1i 11 |
. . . 4
|
| 25 | 12 | a1i 11 |
. . . 4
|
| 26 | equid 1939 |
. . . . . 6
| |
| 27 | simpr 477 |
. . . . . . 7
| |
| 28 | resieq 5407 |
. . . . . . 7
| |
| 29 | 27, 27, 28 | syl2anc 693 |
. . . . . 6
|
| 30 | 26, 29 | mpbiri 248 |
. . . . 5
|
| 31 | simplrr 801 |
. . . . . 6
| |
| 32 | 31 | ssbrd 4696 |
. . . . 5
|
| 33 | 30, 32 | mpd 15 |
. . . 4
|
| 34 | 3, 12, 1 | pleval2i 16964 |
. . . . . 6
|
| 35 | 34 | 3adant1 1079 |
. . . . 5
|
| 36 | 3, 12, 1 | pleval2i 16964 |
. . . . . . 7
|
| 37 | 36 | ancoms 469 |
. . . . . 6
|
| 38 | 37 | 3adant1 1079 |
. . . . 5
|
| 39 | simprl 794 |
. . . . . . . 8
| |
| 40 | po2nr 5048 |
. . . . . . . . 9
| |
| 41 | 40 | 3impb 1260 |
. . . . . . . 8
|
| 42 | 39, 41 | syl3an1 1359 |
. . . . . . 7
|
| 43 | 42 | pm2.21d 118 |
. . . . . 6
|
| 44 | simpl 473 |
. . . . . . 7
| |
| 45 | 44 | a1i 11 |
. . . . . 6
|
| 46 | simpr 477 |
. . . . . . . 8
| |
| 47 | 46 | eqcomd 2628 |
. . . . . . 7
|
| 48 | 47 | a1i 11 |
. . . . . 6
|
| 49 | simpl 473 |
. . . . . . 7
| |
| 50 | 49 | a1i 11 |
. . . . . 6
|
| 51 | 43, 45, 48, 50 | ccased 988 |
. . . . 5
|
| 52 | 35, 38, 51 | syl2and 500 |
. . . 4
|
| 53 | simpr1 1067 |
. . . . . 6
| |
| 54 | simpr2 1068 |
. . . . . 6
| |
| 55 | 53, 54, 34 | syl2anc 693 |
. . . . 5
|
| 56 | simpr3 1069 |
. . . . . 6
| |
| 57 | 3, 12, 1 | pleval2i 16964 |
. . . . . 6
|
| 58 | 54, 56, 57 | syl2anc 693 |
. . . . 5
|
| 59 | potr 5047 |
. . . . . . . 8
| |
| 60 | 39, 59 | sylan 488 |
. . . . . . 7
|
| 61 | simpll 790 |
. . . . . . . 8
| |
| 62 | 12, 1 | pltle 16961 |
. . . . . . . 8
|
| 63 | 61, 53, 56, 62 | syl3anc 1326 |
. . . . . . 7
|
| 64 | 60, 63 | syld 47 |
. . . . . 6
|
| 65 | breq1 4656 |
. . . . . . . 8
| |
| 66 | 65 | biimpar 502 |
. . . . . . 7
|
| 67 | 66, 63 | syl5 34 |
. . . . . 6
|
| 68 | breq2 4657 |
. . . . . . . 8
| |
| 69 | 68 | biimpac 503 |
. . . . . . 7
|
| 70 | 69, 63 | syl5 34 |
. . . . . 6
|
| 71 | 53, 33 | syldan 487 |
. . . . . . 7
|
| 72 | eqtr 2641 |
. . . . . . . 8
| |
| 73 | 72 | breq2d 4665 |
. . . . . . 7
|
| 74 | 71, 73 | syl5ibcom 235 |
. . . . . 6
|
| 75 | 64, 67, 70, 74 | ccased 988 |
. . . . 5
|
| 76 | 55, 58, 75 | syl2and 500 |
. . . 4
|
| 77 | 23, 24, 25, 33, 52, 76 | isposd 16955 |
. . 3
|
| 78 | 77 | ex 450 |
. 2
|
| 79 | 21, 78 | impbid2 216 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-res 5126 df-iota 5851 df-fun 5890 df-fv 5896 df-preset 16928 df-poset 16946 df-plt 16958 |
| This theorem is referenced by: tosso 17036 |
| Copyright terms: Public domain | W3C validator |