MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrlem Structured version   Visualization version   Unicode version

Theorem dgrlem 23985
Description: Lemma for dgrcl 23989 and similar theorems. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypothesis
Ref Expression
dgrval.1  |-  A  =  (coeff `  F )
Assertion
Ref Expression
dgrlem  |-  ( F  e.  (Poly `  S
)  ->  ( A : NN0 --> ( S  u.  { 0 } )  /\  E. n  e.  ZZ  A. x  e.  ( `' A " ( CC  \  { 0 } ) ) x  <_  n
) )
Distinct variable groups:    x, n, A    n, F, x    S, n, x

Proof of Theorem dgrlem
Dummy variables  a 
k  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elply2 23952 . . . 4  |-  ( F  e.  (Poly `  S
)  <->  ( S  C_  CC  /\  E. n  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) ) )
21simprbi 480 . . 3  |-  ( F  e.  (Poly `  S
)  ->  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) )
3 simplrr 801 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
4 simpll 790 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  ->  F  e.  (Poly `  S
) )
5 plybss 23950 . . . . . . . . . . 11  |-  ( F  e.  (Poly `  S
)  ->  S  C_  CC )
64, 5syl 17 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  ->  S  C_  CC )
7 0cnd 10033 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
0  e.  CC )
87snssd 4340 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  ->  { 0 }  C_  CC )
96, 8unssd 3789 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( S  u.  {
0 } )  C_  CC )
10 cnex 10017 . . . . . . . . 9  |-  CC  e.  _V
11 ssexg 4804 . . . . . . . . 9  |-  ( ( ( S  u.  {
0 } )  C_  CC  /\  CC  e.  _V )  ->  ( S  u.  { 0 } )  e. 
_V )
129, 10, 11sylancl 694 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( S  u.  {
0 } )  e. 
_V )
13 nn0ex 11298 . . . . . . . 8  |-  NN0  e.  _V
14 elmapg 7870 . . . . . . . 8  |-  ( ( ( S  u.  {
0 } )  e. 
_V  /\  NN0  e.  _V )  ->  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  <->  a : NN0 --> ( S  u.  { 0 } ) ) )
1512, 13, 14sylancl 694 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( a  e.  ( ( S  u.  {
0 } )  ^m  NN0 )  <->  a : NN0 --> ( S  u.  { 0 } ) ) )
163, 15mpbid 222 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
a : NN0 --> ( S  u.  { 0 } ) )
17 dgrval.1 . . . . . . . 8  |-  A  =  (coeff `  F )
18 simplrl 800 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  ->  n  e.  NN0 )
1916, 9fssd 6057 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
a : NN0 --> CC )
20 simprl 794 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( a " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 } )
21 simprr 796 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )
224, 18, 19, 20, 21coeeq 23983 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
(coeff `  F )  =  a )
2317, 22syl5req 2669 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
a  =  A )
2423feq1d 6030 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( a : NN0 --> ( S  u.  { 0 } )  <->  A : NN0
--> ( S  u.  {
0 } ) ) )
2516, 24mpbid 222 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  ->  A : NN0 --> ( S  u.  { 0 } ) )
2625ex 450 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
( ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  ->  A : NN0 --> ( S  u.  { 0 } ) ) )
2726rexlimdvva 3038 . . 3  |-  ( F  e.  (Poly `  S
)  ->  ( E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  ->  A : NN0 --> ( S  u.  { 0 } ) ) )
282, 27mpd 15 . 2  |-  ( F  e.  (Poly `  S
)  ->  A : NN0
--> ( S  u.  {
0 } ) )
29 nn0ssz 11398 . . 3  |-  NN0  C_  ZZ
30 ffn 6045 . . . . . . . . . . . . . . 15  |-  ( a : NN0 --> CC  ->  a  Fn  NN0 )
31 elpreima 6337 . . . . . . . . . . . . . . 15  |-  ( a  Fn  NN0  ->  ( x  e.  ( `' a
" ( CC  \  { 0 } ) )  <->  ( x  e. 
NN0  /\  ( a `  x )  e.  ( CC  \  { 0 } ) ) ) )
3219, 30, 313syl 18 . . . . . . . . . . . . . 14  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( x  e.  ( `' a " ( CC  \  { 0 } ) )  <->  ( x  e.  NN0  /\  ( a `
 x )  e.  ( CC  \  {
0 } ) ) ) )
3332biimpa 501 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  (Poly `  S )  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  /\  x  e.  ( `' a " ( CC  \  { 0 } ) ) )  ->  (
x  e.  NN0  /\  ( a `  x
)  e.  ( CC 
\  { 0 } ) ) )
3433simprd 479 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  (Poly `  S )  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  /\  x  e.  ( `' a " ( CC  \  { 0 } ) ) )  ->  (
a `  x )  e.  ( CC  \  {
0 } ) )
35 eldifsni 4320 . . . . . . . . . . . 12  |-  ( ( a `  x )  e.  ( CC  \  { 0 } )  ->  ( a `  x )  =/=  0
)
3634, 35syl 17 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  (Poly `  S )  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  /\  x  e.  ( `' a " ( CC  \  { 0 } ) ) )  ->  (
a `  x )  =/=  0 )
3733simpld 475 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  (Poly `  S )  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  /\  x  e.  ( `' a " ( CC  \  { 0 } ) ) )  ->  x  e.  NN0 )
38 plyco0 23948 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  NN0  /\  a : NN0 --> CC )  ->  ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  <->  A. x  e.  NN0  ( ( a `
 x )  =/=  0  ->  x  <_  n ) ) )
3918, 19, 38syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  <->  A. x  e.  NN0  ( ( a `  x )  =/=  0  ->  x  <_  n )
) )
4020, 39mpbid 222 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  ->  A. x  e.  NN0  ( ( a `  x )  =/=  0  ->  x  <_  n )
)
4140r19.21bi 2932 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  (Poly `  S )  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  /\  x  e.  NN0 )  -> 
( ( a `  x )  =/=  0  ->  x  <_  n )
)
4237, 41syldan 487 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  (Poly `  S )  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  /\  x  e.  ( `' a " ( CC  \  { 0 } ) ) )  ->  (
( a `  x
)  =/=  0  ->  x  <_  n ) )
4336, 42mpd 15 . . . . . . . . . 10  |-  ( ( ( ( F  e.  (Poly `  S )  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  /\  x  e.  ( `' a " ( CC  \  { 0 } ) ) )  ->  x  <_  n )
4443ralrimiva 2966 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  ->  A. x  e.  ( `' a " ( CC  \  { 0 } ) ) x  <_  n )
4523cnveqd 5298 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  ->  `' a  =  `' A )
4645imaeq1d 5465 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( `' a "
( CC  \  {
0 } ) )  =  ( `' A " ( CC  \  {
0 } ) ) )
4746raleqdv 3144 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( A. x  e.  ( `' a "
( CC  \  {
0 } ) ) x  <_  n  <->  A. x  e.  ( `' A "
( CC  \  {
0 } ) ) x  <_  n )
)
4844, 47mpbid 222 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )  ->  A. x  e.  ( `' A " ( CC 
\  { 0 } ) ) x  <_  n )
4948ex 450 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
( ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  ->  A. x  e.  ( `' A " ( CC 
\  { 0 } ) ) x  <_  n ) )
5049expr 643 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  n  e.  NN0 )  ->  (
a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  ->  ( ( ( a " ( ZZ>= `  ( n  +  1
) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  ->  A. x  e.  ( `' A " ( CC 
\  { 0 } ) ) x  <_  n ) ) )
5150rexlimdv 3030 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  n  e.  NN0 )  ->  ( E. a  e.  (
( S  u.  {
0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  ->  A. x  e.  ( `' A " ( CC 
\  { 0 } ) ) x  <_  n ) )
5251reximdva 3017 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  ( E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  ->  E. n  e.  NN0  A. x  e.  ( `' A " ( CC 
\  { 0 } ) ) x  <_  n ) )
532, 52mpd 15 . . 3  |-  ( F  e.  (Poly `  S
)  ->  E. n  e.  NN0  A. x  e.  ( `' A "
( CC  \  {
0 } ) ) x  <_  n )
54 ssrexv 3667 . . 3  |-  ( NN0  C_  ZZ  ->  ( E. n  e.  NN0  A. x  e.  ( `' A "
( CC  \  {
0 } ) ) x  <_  n  ->  E. n  e.  ZZ  A. x  e.  ( `' A " ( CC  \  { 0 } ) ) x  <_  n
) )
5529, 53, 54mpsyl 68 . 2  |-  ( F  e.  (Poly `  S
)  ->  E. n  e.  ZZ  A. x  e.  ( `' A "
( CC  \  {
0 } ) ) x  <_  n )
5628, 55jca 554 1  |-  ( F  e.  (Poly `  S
)  ->  ( A : NN0 --> ( S  u.  { 0 } )  /\  E. n  e.  ZZ  A. x  e.  ( `' A " ( CC  \  { 0 } ) ) x  <_  n
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    u. cun 3572    C_ wss 3574   {csn 4177   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    <_ cle 10075   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   ^cexp 12860   sum_csu 14416  Polycply 23940  coeffccoe 23942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-0p 23437  df-ply 23944  df-coe 23946
This theorem is referenced by:  coef  23986  dgrcl  23989  dgrub  23990  dgrlb  23992
  Copyright terms: Public domain W3C validator