MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plycj Structured version   Visualization version   Unicode version

Theorem plycj 24033
Description: The double conjugation of a polynomial is a polynomial. (The single conjugation is not because our definition of polynomial includes only holomorphic functions, i.e. no dependence on  ( * `  z ) independently of  z.) (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
plycj.1  |-  N  =  (deg `  F )
plycj.2  |-  G  =  ( ( *  o.  F )  o.  *
)
plycj.3  |-  ( (
ph  /\  x  e.  S )  ->  (
* `  x )  e.  S )
plycj.4  |-  ( ph  ->  F  e.  (Poly `  S ) )
Assertion
Ref Expression
plycj  |-  ( ph  ->  G  e.  (Poly `  S ) )
Distinct variable groups:    x, F    x, N    ph, x    x, S
Allowed substitution hint:    G( x)

Proof of Theorem plycj
Dummy variables  k 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plycj.4 . . . 4  |-  ( ph  ->  F  e.  (Poly `  S ) )
2 plycj.1 . . . . 5  |-  N  =  (deg `  F )
3 plycj.2 . . . . 5  |-  G  =  ( ( *  o.  F )  o.  *
)
4 eqid 2622 . . . . 5  |-  (coeff `  F )  =  (coeff `  F )
52, 3, 4plycjlem 24032 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( *  o.  (coeff `  F )
) `  k )  x.  ( z ^ k
) ) ) )
61, 5syl 17 . . 3  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( ( *  o.  (coeff `  F ) ) `  k )  x.  (
z ^ k ) ) ) )
7 plybss 23950 . . . . . 6  |-  ( F  e.  (Poly `  S
)  ->  S  C_  CC )
81, 7syl 17 . . . . 5  |-  ( ph  ->  S  C_  CC )
9 0cnd 10033 . . . . . 6  |-  ( ph  ->  0  e.  CC )
109snssd 4340 . . . . 5  |-  ( ph  ->  { 0 }  C_  CC )
118, 10unssd 3789 . . . 4  |-  ( ph  ->  ( S  u.  {
0 } )  C_  CC )
12 dgrcl 23989 . . . . . 6  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  e.  NN0 )
131, 12syl 17 . . . . 5  |-  ( ph  ->  (deg `  F )  e.  NN0 )
142, 13syl5eqel 2705 . . . 4  |-  ( ph  ->  N  e.  NN0 )
154coef 23986 . . . . . . 7  |-  ( F  e.  (Poly `  S
)  ->  (coeff `  F
) : NN0 --> ( S  u.  { 0 } ) )
161, 15syl 17 . . . . . 6  |-  ( ph  ->  (coeff `  F ) : NN0 --> ( S  u.  { 0 } ) )
17 elfznn0 12433 . . . . . 6  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
18 fvco3 6275 . . . . . 6  |-  ( ( (coeff `  F ) : NN0 --> ( S  u.  { 0 } )  /\  k  e.  NN0 )  -> 
( ( *  o.  (coeff `  F )
) `  k )  =  ( * `  ( (coeff `  F ) `  k ) ) )
1916, 17, 18syl2an 494 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( *  o.  (coeff `  F ) ) `  k )  =  ( * `  ( (coeff `  F ) `  k
) ) )
20 ffvelrn 6357 . . . . . . 7  |-  ( ( (coeff `  F ) : NN0 --> ( S  u.  { 0 } )  /\  k  e.  NN0 )  -> 
( (coeff `  F
) `  k )  e.  ( S  u.  {
0 } ) )
2116, 17, 20syl2an 494 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
(coeff `  F ) `  k )  e.  ( S  u.  { 0 } ) )
22 plycj.3 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  S )  ->  (
* `  x )  e.  S )
2322ralrimiva 2966 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  S  ( * `  x
)  e.  S )
24 fveq2 6191 . . . . . . . . . . . 12  |-  ( x  =  ( (coeff `  F ) `  k
)  ->  ( * `  x )  =  ( * `  ( (coeff `  F ) `  k
) ) )
2524eleq1d 2686 . . . . . . . . . . 11  |-  ( x  =  ( (coeff `  F ) `  k
)  ->  ( (
* `  x )  e.  S  <->  ( * `  ( (coeff `  F ) `  k ) )  e.  S ) )
2625rspccv 3306 . . . . . . . . . 10  |-  ( A. x  e.  S  (
* `  x )  e.  S  ->  ( ( (coeff `  F ) `  k )  e.  S  ->  ( * `  (
(coeff `  F ) `  k ) )  e.  S ) )
2723, 26syl 17 . . . . . . . . 9  |-  ( ph  ->  ( ( (coeff `  F ) `  k
)  e.  S  -> 
( * `  (
(coeff `  F ) `  k ) )  e.  S ) )
28 elsni 4194 . . . . . . . . . . . . 13  |-  ( ( (coeff `  F ) `  k )  e.  {
0 }  ->  (
(coeff `  F ) `  k )  =  0 )
2928fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( (coeff `  F ) `  k )  e.  {
0 }  ->  (
* `  ( (coeff `  F ) `  k
) )  =  ( * `  0 ) )
30 cj0 13898 . . . . . . . . . . . 12  |-  ( * `
 0 )  =  0
3129, 30syl6eq 2672 . . . . . . . . . . 11  |-  ( ( (coeff `  F ) `  k )  e.  {
0 }  ->  (
* `  ( (coeff `  F ) `  k
) )  =  0 )
32 fvex 6201 . . . . . . . . . . . 12  |-  ( * `
 ( (coeff `  F ) `  k
) )  e.  _V
3332elsn 4192 . . . . . . . . . . 11  |-  ( ( * `  ( (coeff `  F ) `  k
) )  e.  {
0 }  <->  ( * `  ( (coeff `  F
) `  k )
)  =  0 )
3431, 33sylibr 224 . . . . . . . . . 10  |-  ( ( (coeff `  F ) `  k )  e.  {
0 }  ->  (
* `  ( (coeff `  F ) `  k
) )  e.  {
0 } )
3534a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( ( (coeff `  F ) `  k
)  e.  { 0 }  ->  ( * `  ( (coeff `  F
) `  k )
)  e.  { 0 } ) )
3627, 35orim12d 883 . . . . . . . 8  |-  ( ph  ->  ( ( ( (coeff `  F ) `  k
)  e.  S  \/  ( (coeff `  F ) `  k )  e.  {
0 } )  -> 
( ( * `  ( (coeff `  F ) `  k ) )  e.  S  \/  ( * `
 ( (coeff `  F ) `  k
) )  e.  {
0 } ) ) )
37 elun 3753 . . . . . . . 8  |-  ( ( (coeff `  F ) `  k )  e.  ( S  u.  { 0 } )  <->  ( (
(coeff `  F ) `  k )  e.  S  \/  ( (coeff `  F
) `  k )  e.  { 0 } ) )
38 elun 3753 . . . . . . . 8  |-  ( ( * `  ( (coeff `  F ) `  k
) )  e.  ( S  u.  { 0 } )  <->  ( (
* `  ( (coeff `  F ) `  k
) )  e.  S  \/  ( * `  (
(coeff `  F ) `  k ) )  e. 
{ 0 } ) )
3936, 37, 383imtr4g 285 . . . . . . 7  |-  ( ph  ->  ( ( (coeff `  F ) `  k
)  e.  ( S  u.  { 0 } )  ->  ( * `  ( (coeff `  F
) `  k )
)  e.  ( S  u.  { 0 } ) ) )
4039adantr 481 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( (coeff `  F
) `  k )  e.  ( S  u.  {
0 } )  -> 
( * `  (
(coeff `  F ) `  k ) )  e.  ( S  u.  {
0 } ) ) )
4121, 40mpd 15 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
* `  ( (coeff `  F ) `  k
) )  e.  ( S  u.  { 0 } ) )
4219, 41eqeltrd 2701 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( *  o.  (coeff `  F ) ) `  k )  e.  ( S  u.  { 0 } ) )
4311, 14, 42elplyd 23958 . . 3  |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( *  o.  (coeff `  F )
) `  k )  x.  ( z ^ k
) ) )  e.  (Poly `  ( S  u.  { 0 } ) ) )
446, 43eqeltrd 2701 . 2  |-  ( ph  ->  G  e.  (Poly `  ( S  u.  { 0 } ) ) )
45 plyun0 23953 . 2  |-  (Poly `  ( S  u.  { 0 } ) )  =  (Poly `  S )
4644, 45syl6eleq 2711 1  |-  ( ph  ->  G  e.  (Poly `  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    u. cun 3572    C_ wss 3574   {csn 4177    |-> cmpt 4729    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936    x. cmul 9941   NN0cn0 11292   ...cfz 12326   ^cexp 12860   *ccj 13836   sum_csu 14416  Polycply 23940  coeffccoe 23942  degcdgr 23943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-0p 23437  df-ply 23944  df-coe 23946  df-dgr 23947
This theorem is referenced by:  coecj  24034
  Copyright terms: Public domain W3C validator