MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeidlem Structured version   Visualization version   Unicode version

Theorem coeidlem 23993
Description: Lemma for coeid 23994. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
dgrub.1  |-  A  =  (coeff `  F )
dgrub.2  |-  N  =  (deg `  F )
coeid.3  |-  ( ph  ->  F  e.  (Poly `  S ) )
coeid.4  |-  ( ph  ->  M  e.  NN0 )
coeid.5  |-  ( ph  ->  B  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
coeid.6  |-  ( ph  ->  ( B " ( ZZ>=
`  ( M  + 
1 ) ) )  =  { 0 } )
coeid.7  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... M
) ( ( B `
 k )  x.  ( z ^ k
) ) ) )
Assertion
Ref Expression
coeidlem  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
Distinct variable groups:    z, k, A    k, F    ph, k, z    S, k, z    B, k, z    k, M, z   
k, N, z
Allowed substitution hint:    F( z)

Proof of Theorem coeidlem
StepHypRef Expression
1 coeid.7 . 2  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... M
) ( ( B `
 k )  x.  ( z ^ k
) ) ) )
2 dgrub.1 . . . . . . 7  |-  A  =  (coeff `  F )
3 coeid.3 . . . . . . . 8  |-  ( ph  ->  F  e.  (Poly `  S ) )
4 coeid.4 . . . . . . . 8  |-  ( ph  ->  M  e.  NN0 )
5 coeid.5 . . . . . . . . . 10  |-  ( ph  ->  B  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
6 plybss 23950 . . . . . . . . . . . . . 14  |-  ( F  e.  (Poly `  S
)  ->  S  C_  CC )
73, 6syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  S  C_  CC )
8 0cnd 10033 . . . . . . . . . . . . . 14  |-  ( ph  ->  0  e.  CC )
98snssd 4340 . . . . . . . . . . . . 13  |-  ( ph  ->  { 0 }  C_  CC )
107, 9unssd 3789 . . . . . . . . . . . 12  |-  ( ph  ->  ( S  u.  {
0 } )  C_  CC )
11 cnex 10017 . . . . . . . . . . . 12  |-  CC  e.  _V
12 ssexg 4804 . . . . . . . . . . . 12  |-  ( ( ( S  u.  {
0 } )  C_  CC  /\  CC  e.  _V )  ->  ( S  u.  { 0 } )  e. 
_V )
1310, 11, 12sylancl 694 . . . . . . . . . . 11  |-  ( ph  ->  ( S  u.  {
0 } )  e. 
_V )
14 nn0ex 11298 . . . . . . . . . . 11  |-  NN0  e.  _V
15 elmapg 7870 . . . . . . . . . . 11  |-  ( ( ( S  u.  {
0 } )  e. 
_V  /\  NN0  e.  _V )  ->  ( B  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  <->  B : NN0 --> ( S  u.  { 0 } ) ) )
1613, 14, 15sylancl 694 . . . . . . . . . 10  |-  ( ph  ->  ( B  e.  ( ( S  u.  {
0 } )  ^m  NN0 )  <->  B : NN0 --> ( S  u.  { 0 } ) ) )
175, 16mpbid 222 . . . . . . . . 9  |-  ( ph  ->  B : NN0 --> ( S  u.  { 0 } ) )
1817, 10fssd 6057 . . . . . . . 8  |-  ( ph  ->  B : NN0 --> CC )
19 coeid.6 . . . . . . . 8  |-  ( ph  ->  ( B " ( ZZ>=
`  ( M  + 
1 ) ) )  =  { 0 } )
203, 4, 18, 19, 1coeeq 23983 . . . . . . 7  |-  ( ph  ->  (coeff `  F )  =  B )
212, 20syl5req 2669 . . . . . 6  |-  ( ph  ->  B  =  A )
2221adantr 481 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  B  =  A )
23 fveq1 6190 . . . . . . 7  |-  ( B  =  A  ->  ( B `  k )  =  ( A `  k ) )
2423oveq1d 6665 . . . . . 6  |-  ( B  =  A  ->  (
( B `  k
)  x.  ( z ^ k ) )  =  ( ( A `
 k )  x.  ( z ^ k
) ) )
2524sumeq2sdv 14435 . . . . 5  |-  ( B  =  A  ->  sum_ k  e.  ( 0 ... M
) ( ( B `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... M ) ( ( A `  k
)  x.  ( z ^ k ) ) )
2622, 25syl 17 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... M
) ( ( B `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... M ) ( ( A `  k
)  x.  ( z ^ k ) ) )
273adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  CC )  ->  F  e.  (Poly `  S )
)
28 dgrub.2 . . . . . . . . . 10  |-  N  =  (deg `  F )
29 dgrcl 23989 . . . . . . . . . 10  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  e.  NN0 )
3028, 29syl5eqel 2705 . . . . . . . . 9  |-  ( F  e.  (Poly `  S
)  ->  N  e.  NN0 )
3127, 30syl 17 . . . . . . . 8  |-  ( (
ph  /\  z  e.  CC )  ->  N  e. 
NN0 )
3231nn0zd 11480 . . . . . . 7  |-  ( (
ph  /\  z  e.  CC )  ->  N  e.  ZZ )
334adantr 481 . . . . . . . 8  |-  ( (
ph  /\  z  e.  CC )  ->  M  e. 
NN0 )
3433nn0zd 11480 . . . . . . 7  |-  ( (
ph  /\  z  e.  CC )  ->  M  e.  ZZ )
3522imaeq1d 5465 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  CC )  ->  ( B
" ( ZZ>= `  ( M  +  1 ) ) )  =  ( A " ( ZZ>= `  ( M  +  1
) ) ) )
3619adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  CC )  ->  ( B
" ( ZZ>= `  ( M  +  1 ) ) )  =  {
0 } )
3735, 36eqtr3d 2658 . . . . . . . 8  |-  ( (
ph  /\  z  e.  CC )  ->  ( A
" ( ZZ>= `  ( M  +  1 ) ) )  =  {
0 } )
382, 28dgrlb 23992 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A
" ( ZZ>= `  ( M  +  1 ) ) )  =  {
0 } )  ->  N  <_  M )
3927, 33, 37, 38syl3anc 1326 . . . . . . 7  |-  ( (
ph  /\  z  e.  CC )  ->  N  <_  M )
40 eluz2 11693 . . . . . . 7  |-  ( M  e.  ( ZZ>= `  N
)  <->  ( N  e.  ZZ  /\  M  e.  ZZ  /\  N  <_  M ) )
4132, 34, 39, 40syl3anbrc 1246 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  M  e.  ( ZZ>= `  N )
)
42 fzss2 12381 . . . . . 6  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( 0 ... N )  C_  ( 0 ... M
) )
4341, 42syl 17 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... N )  C_  ( 0 ... M
) )
44 elfznn0 12433 . . . . . 6  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
45 plyssc 23956 . . . . . . . . . . 11  |-  (Poly `  S )  C_  (Poly `  CC )
4645, 3sseldi 3601 . . . . . . . . . 10  |-  ( ph  ->  F  e.  (Poly `  CC ) )
472coef3 23988 . . . . . . . . . 10  |-  ( F  e.  (Poly `  CC )  ->  A : NN0 --> CC )
4846, 47syl 17 . . . . . . . . 9  |-  ( ph  ->  A : NN0 --> CC )
4948adantr 481 . . . . . . . 8  |-  ( (
ph  /\  z  e.  CC )  ->  A : NN0
--> CC )
5049ffvelrnda 6359 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  ( A `  k )  e.  CC )
51 expcl 12878 . . . . . . . 8  |-  ( ( z  e.  CC  /\  k  e.  NN0 )  -> 
( z ^ k
)  e.  CC )
5251adantll 750 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
z ^ k )  e.  CC )
5350, 52mulcld 10060 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
( A `  k
)  x.  ( z ^ k ) )  e.  CC )
5444, 53sylan2 491 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( A `  k
)  x.  ( z ^ k ) )  e.  CC )
55 eldifn 3733 . . . . . . . . 9  |-  ( k  e.  ( ( 0 ... M )  \ 
( 0 ... N
) )  ->  -.  k  e.  ( 0 ... N ) )
5655adantl 482 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... M )  \  (
0 ... N ) ) )  ->  -.  k  e.  ( 0 ... N
) )
57 eldifi 3732 . . . . . . . . . . . 12  |-  ( k  e.  ( ( 0 ... M )  \ 
( 0 ... N
) )  ->  k  e.  ( 0 ... M
) )
58 elfznn0 12433 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... M )  ->  k  e.  NN0 )
5957, 58syl 17 . . . . . . . . . . 11  |-  ( k  e.  ( ( 0 ... M )  \ 
( 0 ... N
) )  ->  k  e.  NN0 )
602, 28dgrub 23990 . . . . . . . . . . . 12  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  NN0  /\  ( A `
 k )  =/=  0 )  ->  k  <_  N )
61603expia 1267 . . . . . . . . . . 11  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  NN0 )  ->  (
( A `  k
)  =/=  0  -> 
k  <_  N )
)
6227, 59, 61syl2an 494 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... M )  \  (
0 ... N ) ) )  ->  ( ( A `  k )  =/=  0  ->  k  <_  N ) )
63 elfzuz 12338 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... M )  ->  k  e.  ( ZZ>= `  0 )
)
6457, 63syl 17 . . . . . . . . . . 11  |-  ( k  e.  ( ( 0 ... M )  \ 
( 0 ... N
) )  ->  k  e.  ( ZZ>= `  0 )
)
65 elfz5 12334 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= ` 
0 )  /\  N  e.  ZZ )  ->  (
k  e.  ( 0 ... N )  <->  k  <_  N ) )
6664, 32, 65syl2anr 495 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... M )  \  (
0 ... N ) ) )  ->  ( k  e.  ( 0 ... N
)  <->  k  <_  N
) )
6762, 66sylibrd 249 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... M )  \  (
0 ... N ) ) )  ->  ( ( A `  k )  =/=  0  ->  k  e.  ( 0 ... N
) ) )
6867necon1bd 2812 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... M )  \  (
0 ... N ) ) )  ->  ( -.  k  e.  ( 0 ... N )  -> 
( A `  k
)  =  0 ) )
6956, 68mpd 15 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... M )  \  (
0 ... N ) ) )  ->  ( A `  k )  =  0 )
7069oveq1d 6665 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... M )  \  (
0 ... N ) ) )  ->  ( ( A `  k )  x.  ( z ^ k
) )  =  ( 0  x.  ( z ^ k ) ) )
71 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  z  e.  CC )  ->  z  e.  CC )
7271, 59, 51syl2an 494 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... M )  \  (
0 ... N ) ) )  ->  ( z ^ k )  e.  CC )
7372mul02d 10234 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... M )  \  (
0 ... N ) ) )  ->  ( 0  x.  ( z ^
k ) )  =  0 )
7470, 73eqtrd 2656 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... M )  \  (
0 ... N ) ) )  ->  ( ( A `  k )  x.  ( z ^ k
) )  =  0 )
75 fzfid 12772 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... M )  e. 
Fin )
7643, 54, 74, 75fsumss 14456 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... M ) ( ( A `  k
)  x.  ( z ^ k ) ) )
7726, 76eqtr4d 2659 . . 3  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... M
) ( ( B `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) )
7877mpteq2dva 4744 . 2  |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... M ) ( ( B `  k
)  x.  ( z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
791, 78eqtrd 2656 1  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    \ cdif 3571    u. cun 3572    C_ wss 3574   {csn 4177   class class class wbr 4653    |-> cmpt 4729   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    <_ cle 10075   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   ^cexp 12860   sum_csu 14416  Polycply 23940  coeffccoe 23942  degcdgr 23943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-0p 23437  df-ply 23944  df-coe 23946  df-dgr 23947
This theorem is referenced by:  coeid  23994
  Copyright terms: Public domain W3C validator