MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrreg Structured version   Visualization version   Unicode version

Theorem frgrreg 27252
Description: If a finite nonempty friendship graph is  K-regular, then  K must be  2 (or  0). (Contributed by Alexander van der Vekens, 9-Oct-2018.) (Revised by AV, 3-Jun-2021.)
Hypothesis
Ref Expression
frgrreggt1.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
frgrreg  |-  ( ( V  e.  Fin  /\  V  =/=  (/) )  ->  (
( G  e. FriendGraph  /\  G RegUSGraph  K )  ->  ( K  =  0  \/  K  =  2 ) ) )

Proof of Theorem frgrreg
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 ancom 466 . . . . . . . . 9  |-  ( ( V  e.  Fin  /\  V  =/=  (/) )  <->  ( V  =/=  (/)  /\  V  e. 
Fin ) )
2 ancom 466 . . . . . . . . 9  |-  ( ( G  e. FriendGraph  /\  G RegUSGraph  K )  <-> 
( G RegUSGraph  K  /\  G  e. FriendGraph  ) )
31, 2anbi12i 733 . . . . . . . 8  |-  ( ( ( V  e.  Fin  /\  V  =/=  (/) )  /\  ( G  e. FriendGraph  /\  G RegUSGraph  K ) )  <->  ( ( V  =/=  (/)  /\  V  e. 
Fin )  /\  ( G RegUSGraph  K  /\  G  e. FriendGraph  ) ) )
43biimpi 206 . . . . . . 7  |-  ( ( ( V  e.  Fin  /\  V  =/=  (/) )  /\  ( G  e. FriendGraph  /\  G RegUSGraph  K ) )  ->  (
( V  =/=  (/)  /\  V  e.  Fin )  /\  ( G RegUSGraph  K  /\  G  e. FriendGraph  ) ) )
54ancomd 467 . . . . . 6  |-  ( ( ( V  e.  Fin  /\  V  =/=  (/) )  /\  ( G  e. FriendGraph  /\  G RegUSGraph  K ) )  ->  (
( G RegUSGraph  K  /\  G  e. FriendGraph  )  /\  ( V  =/=  (/)  /\  V  e. 
Fin ) ) )
6 frgrreggt1.v . . . . . . 7  |-  V  =  (Vtx `  G )
76numclwwlk7lem 27247 . . . . . 6  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  )  /\  ( V  =/=  (/)  /\  V  e. 
Fin ) )  ->  K  e.  NN0 )
85, 7syl 17 . . . . 5  |-  ( ( ( V  e.  Fin  /\  V  =/=  (/) )  /\  ( G  e. FriendGraph  /\  G RegUSGraph  K ) )  ->  K  e.  NN0 )
9 neanior 2886 . . . . . . . 8  |-  ( ( K  =/=  0  /\  K  =/=  2 )  <->  -.  ( K  =  0  \/  K  =  2 ) )
10 nn0re 11301 . . . . . . . . . . . . . 14  |-  ( K  e.  NN0  ->  K  e.  RR )
11 1re 10039 . . . . . . . . . . . . . 14  |-  1  e.  RR
12 lenlt 10116 . . . . . . . . . . . . . 14  |-  ( ( K  e.  RR  /\  1  e.  RR )  ->  ( K  <_  1  <->  -.  1  <  K ) )
1310, 11, 12sylancl 694 . . . . . . . . . . . . 13  |-  ( K  e.  NN0  ->  ( K  <_  1  <->  -.  1  <  K ) )
1413adantl 482 . . . . . . . . . . . 12  |-  ( ( ( K  =/=  0  /\  K  =/=  2
)  /\  K  e.  NN0 )  ->  ( K  <_  1  <->  -.  1  <  K ) )
15 elnnne0 11306 . . . . . . . . . . . . . . . 16  |-  ( K  e.  NN  <->  ( K  e.  NN0  /\  K  =/=  0 ) )
16 nnle1eq1 11048 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  NN  ->  ( K  <_  1  <->  K  = 
1 ) )
1716biimpd 219 . . . . . . . . . . . . . . . 16  |-  ( K  e.  NN  ->  ( K  <_  1  ->  K  =  1 ) )
1815, 17sylbir 225 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  NN0  /\  K  =/=  0 )  -> 
( K  <_  1  ->  K  =  1 ) )
1918a1d 25 . . . . . . . . . . . . . 14  |-  ( ( K  e.  NN0  /\  K  =/=  0 )  -> 
( K  =/=  2  ->  ( K  <_  1  ->  K  =  1 ) ) )
2019expimpd 629 . . . . . . . . . . . . 13  |-  ( K  e.  NN0  ->  ( ( K  =/=  0  /\  K  =/=  2 )  ->  ( K  <_ 
1  ->  K  = 
1 ) ) )
2120impcom 446 . . . . . . . . . . . 12  |-  ( ( ( K  =/=  0  /\  K  =/=  2
)  /\  K  e.  NN0 )  ->  ( K  <_  1  ->  K  = 
1 ) )
2214, 21sylbird 250 . . . . . . . . . . 11  |-  ( ( ( K  =/=  0  /\  K  =/=  2
)  /\  K  e.  NN0 )  ->  ( -.  1  <  K  ->  K  =  1 ) )
236fveq2i 6194 . . . . . . . . . . . . . . . . . 18  |-  ( # `  V )  =  (
# `  (Vtx `  G
) )
2423eqeq1i 2627 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  V )  =  1  <->  ( # `  (Vtx `  G ) )  =  1 )
2524biimpi 206 . . . . . . . . . . . . . . . 16  |-  ( (
# `  V )  =  1  ->  ( # `
 (Vtx `  G
) )  =  1 )
26 simpr 477 . . . . . . . . . . . . . . . . 17  |-  ( ( G  e. FriendGraph  /\  G RegUSGraph  K )  ->  G RegUSGraph  K )
2726adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( V  e.  Fin  /\  V  =/=  (/) )  /\  ( G  e. FriendGraph  /\  G RegUSGraph  K ) )  ->  G RegUSGraph  K )
28 rusgr1vtx 26484 . . . . . . . . . . . . . . . 16  |-  ( ( ( # `  (Vtx `  G ) )  =  1  /\  G RegUSGraph  K )  ->  K  =  0 )
2925, 27, 28syl2an 494 . . . . . . . . . . . . . . 15  |-  ( ( ( # `  V
)  =  1  /\  ( ( V  e. 
Fin  /\  V  =/=  (/) )  /\  ( G  e. FriendGraph  /\  G RegUSGraph  K ) ) )  ->  K  = 
0 )
3029orcd 407 . . . . . . . . . . . . . 14  |-  ( ( ( # `  V
)  =  1  /\  ( ( V  e. 
Fin  /\  V  =/=  (/) )  /\  ( G  e. FriendGraph  /\  G RegUSGraph  K ) ) )  ->  ( K  =  0  \/  K  =  2 ) )
3130ex 450 . . . . . . . . . . . . 13  |-  ( (
# `  V )  =  1  ->  (
( ( V  e. 
Fin  /\  V  =/=  (/) )  /\  ( G  e. FriendGraph  /\  G RegUSGraph  K ) )  ->  ( K  =  0  \/  K  =  2 ) ) )
3231a1d 25 . . . . . . . . . . . 12  |-  ( (
# `  V )  =  1  ->  ( K  =  1  ->  ( ( ( V  e. 
Fin  /\  V  =/=  (/) )  /\  ( G  e. FriendGraph  /\  G RegUSGraph  K ) )  ->  ( K  =  0  \/  K  =  2 ) ) ) )
33 eqid 2622 . . . . . . . . . . . . . . . . 17  |-  (VtxDeg `  G )  =  (VtxDeg `  G )
346, 33rusgrprop0 26463 . . . . . . . . . . . . . . . 16  |-  ( G RegUSGraph  K  ->  ( G  e. USGraph  /\  K  e. NN0*  /\  A. v  e.  V  (
(VtxDeg `  G ) `  v )  =  K ) )
35 simp2 1062 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( -.  ( # `  V
)  =  1  /\  G  e. FriendGraph  /\  ( V  e.  Fin  /\  V  =/=  (/) ) )  ->  G  e. FriendGraph  )
36 hashnncl 13157 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( V  e.  Fin  ->  (
( # `  V )  e.  NN  <->  V  =/=  (/) ) )
37 df-ne 2795 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
# `  V )  =/=  1  <->  -.  ( # `  V
)  =  1 )
38 nngt1ne1 11047 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
# `  V )  e.  NN  ->  ( 1  <  ( # `  V
)  <->  ( # `  V
)  =/=  1 ) )
3938biimprd 238 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
# `  V )  e.  NN  ->  ( ( # `
 V )  =/=  1  ->  1  <  (
# `  V )
) )
4037, 39syl5bir 233 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
# `  V )  e.  NN  ->  ( -.  ( # `  V )  =  1  ->  1  <  ( # `  V
) ) )
4136, 40syl6bir 244 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( V  e.  Fin  ->  ( V  =/=  (/)  ->  ( -.  ( # `  V )  =  1  ->  1  <  ( # `  V
) ) ) )
4241imp 445 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( V  e.  Fin  /\  V  =/=  (/) )  ->  ( -.  ( # `  V
)  =  1  -> 
1  <  ( # `  V
) ) )
4342impcom 446 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( -.  ( # `  V
)  =  1  /\  ( V  e.  Fin  /\  V  =/=  (/) ) )  ->  1  <  ( # `
 V ) )
446vdgn1frgrv3 27161 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( G  e. FriendGraph  /\  1  < 
( # `  V ) )  ->  A. v  e.  V  ( (VtxDeg `  G ) `  v
)  =/=  1 )
4535, 43, 443imp3i2an 1278 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( -.  ( # `  V
)  =  1  /\  G  e. FriendGraph  /\  ( V  e.  Fin  /\  V  =/=  (/) ) )  ->  A. v  e.  V  ( (VtxDeg `  G ) `  v )  =/=  1
)
46 r19.26 3064 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( A. v  e.  V  (
( (VtxDeg `  G
) `  v )  =/=  1  /\  (
(VtxDeg `  G ) `  v )  =  K )  <->  ( A. v  e.  V  ( (VtxDeg `  G ) `  v
)  =/=  1  /\ 
A. v  e.  V  ( (VtxDeg `  G ) `  v )  =  K ) )
47 r19.2z 4060 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( V  =/=  (/)  /\  A. v  e.  V  (
( (VtxDeg `  G
) `  v )  =/=  1  /\  (
(VtxDeg `  G ) `  v )  =  K ) )  ->  E. v  e.  V  ( (
(VtxDeg `  G ) `  v )  =/=  1  /\  ( (VtxDeg `  G
) `  v )  =  K ) )
48 neeq1 2856 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( (VtxDeg `  G ) `  v )  =  K  ->  ( ( (VtxDeg `  G ) `  v
)  =/=  1  <->  K  =/=  1 ) )
4948biimpd 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( (VtxDeg `  G ) `  v )  =  K  ->  ( ( (VtxDeg `  G ) `  v
)  =/=  1  ->  K  =/=  1 ) )
5049impcom 446 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( (VtxDeg `  G
) `  v )  =/=  1  /\  (
(VtxDeg `  G ) `  v )  =  K )  ->  K  =/=  1 )
51 eqneqall 2805 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( K  =  1  ->  ( K  =/=  1  ->  ( K  =  0  \/  K  =  2 ) ) )
5251com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( K  =/=  1  ->  ( K  =  1  ->  ( K  =  0  \/  K  =  2 ) ) )
5350, 52syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( (VtxDeg `  G
) `  v )  =/=  1  /\  (
(VtxDeg `  G ) `  v )  =  K )  ->  ( K  =  1  ->  ( K  =  0  \/  K  =  2 ) ) )
5453rexlimivw 3029 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( E. v  e.  V  ( ( (VtxDeg `  G
) `  v )  =/=  1  /\  (
(VtxDeg `  G ) `  v )  =  K )  ->  ( K  =  1  ->  ( K  =  0  \/  K  =  2 ) ) )
5547, 54syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( V  =/=  (/)  /\  A. v  e.  V  (
( (VtxDeg `  G
) `  v )  =/=  1  /\  (
(VtxDeg `  G ) `  v )  =  K ) )  ->  ( K  =  1  ->  ( K  =  0  \/  K  =  2 ) ) )
5655ex 450 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( V  =/=  (/)  ->  ( A. v  e.  V  (
( (VtxDeg `  G
) `  v )  =/=  1  /\  (
(VtxDeg `  G ) `  v )  =  K )  ->  ( K  =  1  ->  ( K  =  0  \/  K  =  2 ) ) ) )
5746, 56syl5bir 233 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( V  =/=  (/)  ->  ( ( A. v  e.  V  ( (VtxDeg `  G ) `  v )  =/=  1  /\  A. v  e.  V  ( (VtxDeg `  G ) `  v )  =  K )  ->  ( K  =  1  ->  ( K  =  0  \/  K  =  2 ) ) ) )
5857expd 452 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( V  =/=  (/)  ->  ( A. v  e.  V  (
(VtxDeg `  G ) `  v )  =/=  1  ->  ( A. v  e.  V  ( (VtxDeg `  G ) `  v
)  =  K  -> 
( K  =  1  ->  ( K  =  0  \/  K  =  2 ) ) ) ) )
5958com34 91 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( V  =/=  (/)  ->  ( A. v  e.  V  (
(VtxDeg `  G ) `  v )  =/=  1  ->  ( K  =  1  ->  ( A. v  e.  V  ( (VtxDeg `  G ) `  v
)  =  K  -> 
( K  =  0  \/  K  =  2 ) ) ) ) )
6059adantl 482 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( V  e.  Fin  /\  V  =/=  (/) )  ->  ( A. v  e.  V  ( (VtxDeg `  G ) `  v )  =/=  1  ->  ( K  =  1  ->  ( A. v  e.  V  ( (VtxDeg `  G ) `  v
)  =  K  -> 
( K  =  0  \/  K  =  2 ) ) ) ) )
61603ad2ant3 1084 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( -.  ( # `  V
)  =  1  /\  G  e. FriendGraph  /\  ( V  e.  Fin  /\  V  =/=  (/) ) )  -> 
( A. v  e.  V  ( (VtxDeg `  G ) `  v
)  =/=  1  -> 
( K  =  1  ->  ( A. v  e.  V  ( (VtxDeg `  G ) `  v
)  =  K  -> 
( K  =  0  \/  K  =  2 ) ) ) ) )
6245, 61mpd 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( -.  ( # `  V
)  =  1  /\  G  e. FriendGraph  /\  ( V  e.  Fin  /\  V  =/=  (/) ) )  -> 
( K  =  1  ->  ( A. v  e.  V  ( (VtxDeg `  G ) `  v
)  =  K  -> 
( K  =  0  \/  K  =  2 ) ) ) )
63623exp 1264 . . . . . . . . . . . . . . . . . 18  |-  ( -.  ( # `  V
)  =  1  -> 
( G  e. FriendGraph  ->  (
( V  e.  Fin  /\  V  =/=  (/) )  -> 
( K  =  1  ->  ( A. v  e.  V  ( (VtxDeg `  G ) `  v
)  =  K  -> 
( K  =  0  \/  K  =  2 ) ) ) ) ) )
6463com15 101 . . . . . . . . . . . . . . . . 17  |-  ( A. v  e.  V  (
(VtxDeg `  G ) `  v )  =  K  ->  ( G  e. FriendGraph  -> 
( ( V  e. 
Fin  /\  V  =/=  (/) )  ->  ( K  =  1  ->  ( -.  ( # `  V
)  =  1  -> 
( K  =  0  \/  K  =  2 ) ) ) ) ) )
65643ad2ant3 1084 . . . . . . . . . . . . . . . 16  |-  ( ( G  e. USGraph  /\  K  e. NN0*  /\  A. v  e.  V  ( (VtxDeg `  G ) `  v )  =  K )  ->  ( G  e. FriendGraph 
->  ( ( V  e. 
Fin  /\  V  =/=  (/) )  ->  ( K  =  1  ->  ( -.  ( # `  V
)  =  1  -> 
( K  =  0  \/  K  =  2 ) ) ) ) ) )
6634, 65syl 17 . . . . . . . . . . . . . . 15  |-  ( G RegUSGraph  K  ->  ( G  e. FriendGraph  -> 
( ( V  e. 
Fin  /\  V  =/=  (/) )  ->  ( K  =  1  ->  ( -.  ( # `  V
)  =  1  -> 
( K  =  0  \/  K  =  2 ) ) ) ) ) )
6766impcom 446 . . . . . . . . . . . . . 14  |-  ( ( G  e. FriendGraph  /\  G RegUSGraph  K )  ->  ( ( V  e.  Fin  /\  V  =/=  (/) )  ->  ( K  =  1  ->  ( -.  ( # `  V
)  =  1  -> 
( K  =  0  \/  K  =  2 ) ) ) ) )
6867impcom 446 . . . . . . . . . . . . 13  |-  ( ( ( V  e.  Fin  /\  V  =/=  (/) )  /\  ( G  e. FriendGraph  /\  G RegUSGraph  K ) )  ->  ( K  =  1  ->  ( -.  ( # `  V
)  =  1  -> 
( K  =  0  \/  K  =  2 ) ) ) )
6968com13 88 . . . . . . . . . . . 12  |-  ( -.  ( # `  V
)  =  1  -> 
( K  =  1  ->  ( ( ( V  e.  Fin  /\  V  =/=  (/) )  /\  ( G  e. FriendGraph  /\  G RegUSGraph  K ) )  ->  ( K  =  0  \/  K  =  2 ) ) ) )
7032, 69pm2.61i 176 . . . . . . . . . . 11  |-  ( K  =  1  ->  (
( ( V  e. 
Fin  /\  V  =/=  (/) )  /\  ( G  e. FriendGraph  /\  G RegUSGraph  K ) )  ->  ( K  =  0  \/  K  =  2 ) ) )
7122, 70syl6 35 . . . . . . . . . 10  |-  ( ( ( K  =/=  0  /\  K  =/=  2
)  /\  K  e.  NN0 )  ->  ( -.  1  <  K  ->  (
( ( V  e. 
Fin  /\  V  =/=  (/) )  /\  ( G  e. FriendGraph  /\  G RegUSGraph  K ) )  ->  ( K  =  0  \/  K  =  2 ) ) ) )
7271ex 450 . . . . . . . . 9  |-  ( ( K  =/=  0  /\  K  =/=  2 )  ->  ( K  e. 
NN0  ->  ( -.  1  <  K  ->  ( (
( V  e.  Fin  /\  V  =/=  (/) )  /\  ( G  e. FriendGraph  /\  G RegUSGraph  K ) )  ->  ( K  =  0  \/  K  =  2 ) ) ) ) )
7372com23 86 . . . . . . . 8  |-  ( ( K  =/=  0  /\  K  =/=  2 )  ->  ( -.  1  <  K  ->  ( K  e.  NN0  ->  ( (
( V  e.  Fin  /\  V  =/=  (/) )  /\  ( G  e. FriendGraph  /\  G RegUSGraph  K ) )  ->  ( K  =  0  \/  K  =  2 ) ) ) ) )
749, 73sylbir 225 . . . . . . 7  |-  ( -.  ( K  =  0  \/  K  =  2 )  ->  ( -.  1  <  K  ->  ( K  e.  NN0  ->  (
( ( V  e. 
Fin  /\  V  =/=  (/) )  /\  ( G  e. FriendGraph  /\  G RegUSGraph  K ) )  ->  ( K  =  0  \/  K  =  2 ) ) ) ) )
7574impcom 446 . . . . . 6  |-  ( ( -.  1  <  K  /\  -.  ( K  =  0  \/  K  =  2 ) )  -> 
( K  e.  NN0  ->  ( ( ( V  e.  Fin  /\  V  =/=  (/) )  /\  ( G  e. FriendGraph  /\  G RegUSGraph  K ) )  ->  ( K  =  0  \/  K  =  2 ) ) ) )
7675com13 88 . . . . 5  |-  ( ( ( V  e.  Fin  /\  V  =/=  (/) )  /\  ( G  e. FriendGraph  /\  G RegUSGraph  K ) )  ->  ( K  e.  NN0  ->  (
( -.  1  < 
K  /\  -.  ( K  =  0  \/  K  =  2 ) )  ->  ( K  =  0  \/  K  =  2 ) ) ) )
778, 76mpd 15 . . . 4  |-  ( ( ( V  e.  Fin  /\  V  =/=  (/) )  /\  ( G  e. FriendGraph  /\  G RegUSGraph  K ) )  ->  (
( -.  1  < 
K  /\  -.  ( K  =  0  \/  K  =  2 ) )  ->  ( K  =  0  \/  K  =  2 ) ) )
7877com12 32 . . 3  |-  ( ( -.  1  <  K  /\  -.  ( K  =  0  \/  K  =  2 ) )  -> 
( ( ( V  e.  Fin  /\  V  =/=  (/) )  /\  ( G  e. FriendGraph  /\  G RegUSGraph  K ) )  ->  ( K  =  0  \/  K  =  2 ) ) )
7978exp4b 632 . 2  |-  ( -.  1  <  K  -> 
( -.  ( K  =  0  \/  K  =  2 )  -> 
( ( V  e. 
Fin  /\  V  =/=  (/) )  ->  ( ( G  e. FriendGraph  /\  G RegUSGraph  K )  ->  ( K  =  0  \/  K  =  2 ) ) ) ) )
80 simprl 794 . . . . 5  |-  ( ( ( 1  <  K  /\  ( V  e.  Fin  /\  V  =/=  (/) ) )  /\  ( G  e. FriendGraph  /\  G RegUSGraph  K ) )  ->  G  e. FriendGraph  )
81 simpl 473 . . . . . 6  |-  ( ( V  e.  Fin  /\  V  =/=  (/) )  ->  V  e.  Fin )
8281ad2antlr 763 . . . . 5  |-  ( ( ( 1  <  K  /\  ( V  e.  Fin  /\  V  =/=  (/) ) )  /\  ( G  e. FriendGraph  /\  G RegUSGraph  K ) )  ->  V  e.  Fin )
83 simpr 477 . . . . . 6  |-  ( ( V  e.  Fin  /\  V  =/=  (/) )  ->  V  =/=  (/) )
8483ad2antlr 763 . . . . 5  |-  ( ( ( 1  <  K  /\  ( V  e.  Fin  /\  V  =/=  (/) ) )  /\  ( G  e. FriendGraph  /\  G RegUSGraph  K ) )  ->  V  =/=  (/) )
85 simpl 473 . . . . . 6  |-  ( ( 1  <  K  /\  ( V  e.  Fin  /\  V  =/=  (/) ) )  ->  1  <  K
)
8685, 26anim12ci 591 . . . . 5  |-  ( ( ( 1  <  K  /\  ( V  e.  Fin  /\  V  =/=  (/) ) )  /\  ( G  e. FriendGraph  /\  G RegUSGraph  K ) )  -> 
( G RegUSGraph  K  /\  1  <  K ) )
876frgrreggt1 27251 . . . . . 6  |-  ( ( G  e. FriendGraph  /\  V  e. 
Fin  /\  V  =/=  (/) )  ->  ( ( G RegUSGraph  K  /\  1  < 
K )  ->  K  =  2 ) )
8887imp 445 . . . . 5  |-  ( ( ( G  e. FriendGraph  /\  V  e.  Fin  /\  V  =/=  (/) )  /\  ( G RegUSGraph  K  /\  1  < 
K ) )  ->  K  =  2 )
8980, 82, 84, 86, 88syl31anc 1329 . . . 4  |-  ( ( ( 1  <  K  /\  ( V  e.  Fin  /\  V  =/=  (/) ) )  /\  ( G  e. FriendGraph  /\  G RegUSGraph  K ) )  ->  K  =  2 )
9089olcd 408 . . 3  |-  ( ( ( 1  <  K  /\  ( V  e.  Fin  /\  V  =/=  (/) ) )  /\  ( G  e. FriendGraph  /\  G RegUSGraph  K ) )  -> 
( K  =  0  \/  K  =  2 ) )
9190exp31 630 . 2  |-  ( 1  <  K  ->  (
( V  e.  Fin  /\  V  =/=  (/) )  -> 
( ( G  e. FriendGraph  /\  G RegUSGraph  K )  ->  ( K  =  0  \/  K  =  2 ) ) ) )
92 2a1 28 . 2  |-  ( ( K  =  0  \/  K  =  2 )  ->  ( ( V  e.  Fin  /\  V  =/=  (/) )  ->  (
( G  e. FriendGraph  /\  G RegUSGraph  K )  ->  ( K  =  0  \/  K  =  2 ) ) ) )
9379, 91, 92pm2.61ii 177 1  |-  ( ( V  e.  Fin  /\  V  =/=  (/) )  ->  (
( G  e. FriendGraph  /\  G RegUSGraph  K )  ->  ( K  =  0  \/  K  =  2 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   (/)c0 3915   class class class wbr 4653   ` cfv 5888   Fincfn 7955   RRcr 9935   0cc0 9936   1c1 9937    < clt 10074    <_ cle 10075   NNcn 11020   2c2 11070   NN0cn0 11292  NN0*cxnn0 11363   #chash 13117  Vtxcvtx 25874   USGraph cusgr 26044  VtxDegcvtxdg 26361   RegUSGraph crusgr 26452   FriendGraph cfrgr 27120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-reps 13306  df-csh 13535  df-s2 13593  df-s3 13594  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471  df-vtx 25876  df-iedg 25877  df-edg 25940  df-uhgr 25953  df-ushgr 25954  df-upgr 25977  df-umgr 25978  df-uspgr 26045  df-usgr 26046  df-fusgr 26209  df-nbgr 26228  df-vtxdg 26362  df-rgr 26453  df-rusgr 26454  df-wlks 26495  df-wlkson 26496  df-trls 26589  df-trlson 26590  df-pths 26612  df-spths 26613  df-pthson 26614  df-spthson 26615  df-wwlks 26722  df-wwlksn 26723  df-wwlksnon 26724  df-wspthsn 26725  df-wspthsnon 26726  df-clwwlks 26877  df-clwwlksn 26878  df-frgr 27121
This theorem is referenced by:  frgrregord013  27253
  Copyright terms: Public domain W3C validator