MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmresg Structured version   Visualization version   Unicode version

Theorem pmresg 7885
Description: Elementhood of a restricted function in the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.)
Assertion
Ref Expression
pmresg  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  -> 
( F  |`  B )  e.  ( A  ^pm  B ) )

Proof of Theorem pmresg
StepHypRef Expression
1 n0i 3920 . . . . 5  |-  ( F  e.  ( A  ^pm  C )  ->  -.  ( A  ^pm  C )  =  (/) )
2 fnpm 7865 . . . . . . 7  |-  ^pm  Fn  ( _V  X.  _V )
3 fndm 5990 . . . . . . 7  |-  (  ^pm  Fn  ( _V  X.  _V )  ->  dom  ^pm  =  ( _V  X.  _V )
)
42, 3ax-mp 5 . . . . . 6  |-  dom  ^pm  =  ( _V  X.  _V )
54ndmov 6818 . . . . 5  |-  ( -.  ( A  e.  _V  /\  C  e.  _V )  ->  ( A  ^pm  C
)  =  (/) )
61, 5nsyl2 142 . . . 4  |-  ( F  e.  ( A  ^pm  C )  ->  ( A  e.  _V  /\  C  e. 
_V ) )
76simpld 475 . . 3  |-  ( F  e.  ( A  ^pm  C )  ->  A  e.  _V )
87adantl 482 . 2  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  ->  A  e.  _V )
9 simpl 473 . 2  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  ->  B  e.  V )
10 elpmi 7876 . . . . . 6  |-  ( F  e.  ( A  ^pm  C )  ->  ( F : dom  F --> A  /\  dom  F  C_  C )
)
1110simpld 475 . . . . 5  |-  ( F  e.  ( A  ^pm  C )  ->  F : dom  F --> A )
1211adantl 482 . . . 4  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  ->  F : dom  F --> A )
13 inss1 3833 . . . 4  |-  ( dom 
F  i^i  B )  C_ 
dom  F
14 fssres 6070 . . . 4  |-  ( ( F : dom  F --> A  /\  ( dom  F  i^i  B )  C_  dom  F )  ->  ( F  |`  ( dom  F  i^i  B ) ) : ( dom  F  i^i  B
) --> A )
1512, 13, 14sylancl 694 . . 3  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  -> 
( F  |`  ( dom  F  i^i  B ) ) : ( dom 
F  i^i  B ) --> A )
16 ffun 6048 . . . . 5  |-  ( F : dom  F --> A  ->  Fun  F )
17 resres 5409 . . . . . 6  |-  ( ( F  |`  dom  F )  |`  B )  =  ( F  |`  ( dom  F  i^i  B ) )
18 funrel 5905 . . . . . . 7  |-  ( Fun 
F  ->  Rel  F )
19 resdm 5441 . . . . . . 7  |-  ( Rel 
F  ->  ( F  |` 
dom  F )  =  F )
20 reseq1 5390 . . . . . . 7  |-  ( ( F  |`  dom  F )  =  F  ->  (
( F  |`  dom  F
)  |`  B )  =  ( F  |`  B ) )
2118, 19, 203syl 18 . . . . . 6  |-  ( Fun 
F  ->  ( ( F  |`  dom  F )  |`  B )  =  ( F  |`  B )
)
2217, 21syl5eqr 2670 . . . . 5  |-  ( Fun 
F  ->  ( F  |`  ( dom  F  i^i  B ) )  =  ( F  |`  B )
)
2312, 16, 223syl 18 . . . 4  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  -> 
( F  |`  ( dom  F  i^i  B ) )  =  ( F  |`  B ) )
2423feq1d 6030 . . 3  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  -> 
( ( F  |`  ( dom  F  i^i  B
) ) : ( dom  F  i^i  B
) --> A  <->  ( F  |`  B ) : ( dom  F  i^i  B
) --> A ) )
2515, 24mpbid 222 . 2  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  -> 
( F  |`  B ) : ( dom  F  i^i  B ) --> A )
26 inss2 3834 . . 3  |-  ( dom 
F  i^i  B )  C_  B
27 elpm2r 7875 . . 3  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  ( ( F  |`  B ) : ( dom  F  i^i  B
) --> A  /\  ( dom  F  i^i  B ) 
C_  B ) )  ->  ( F  |`  B )  e.  ( A  ^pm  B )
)
2826, 27mpanr2 720 . 2  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  ( F  |`  B ) : ( dom  F  i^i  B
) --> A )  -> 
( F  |`  B )  e.  ( A  ^pm  B ) )
298, 9, 25, 28syl21anc 1325 1  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  -> 
( F  |`  B )  e.  ( A  ^pm  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915    X. cxp 5112   dom cdm 5114    |` cres 5116   Rel wrel 5119   Fun wfun 5882    Fn wfn 5883   -->wf 5884  (class class class)co 6650    ^pm cpm 7858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-pm 7860
This theorem is referenced by:  lmres  21104  mbfres  23411  dvnres  23694  cpnres  23700  caures  33556
  Copyright terms: Public domain W3C validator