MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvnres Structured version   Visualization version   Unicode version

Theorem dvnres 23694
Description: Multiple derivative version of dvres3a 23678. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
dvnres  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC )  /\  N  e.  NN0 )  /\  dom  ( ( CC  Dn F ) `  N )  =  dom  F )  ->  ( ( S  Dn ( F  |`  S ) ) `  N )  =  ( ( ( CC  Dn F ) `  N )  |`  S ) )

Proof of Theorem dvnres
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . . . . 9  |-  ( x  =  0  ->  (
( CC  Dn
F ) `  x
)  =  ( ( CC  Dn F ) `  0 ) )
21dmeqd 5326 . . . . . . . 8  |-  ( x  =  0  ->  dom  ( ( CC  Dn F ) `  x )  =  dom  ( ( CC  Dn F ) ` 
0 ) )
32eqeq1d 2624 . . . . . . 7  |-  ( x  =  0  ->  ( dom  ( ( CC  Dn F ) `  x )  =  dom  F  <->  dom  ( ( CC  Dn F ) ` 
0 )  =  dom  F ) )
4 fveq2 6191 . . . . . . . 8  |-  ( x  =  0  ->  (
( S  Dn
( F  |`  S ) ) `  x )  =  ( ( S  Dn ( F  |`  S ) ) ` 
0 ) )
51reseq1d 5395 . . . . . . . 8  |-  ( x  =  0  ->  (
( ( CC  Dn F ) `  x )  |`  S )  =  ( ( ( CC  Dn F ) `  0 )  |`  S ) )
64, 5eqeq12d 2637 . . . . . . 7  |-  ( x  =  0  ->  (
( ( S  Dn ( F  |`  S ) ) `  x )  =  ( ( ( CC  Dn F ) `  x )  |`  S )  <-> 
( ( S  Dn ( F  |`  S ) ) ` 
0 )  =  ( ( ( CC  Dn F ) ` 
0 )  |`  S ) ) )
73, 6imbi12d 334 . . . . . 6  |-  ( x  =  0  ->  (
( dom  ( ( CC  Dn F ) `
 x )  =  dom  F  ->  (
( S  Dn
( F  |`  S ) ) `  x )  =  ( ( ( CC  Dn F ) `  x )  |`  S ) )  <->  ( dom  ( ( CC  Dn F ) ` 
0 )  =  dom  F  ->  ( ( S  Dn ( F  |`  S ) ) ` 
0 )  =  ( ( ( CC  Dn F ) ` 
0 )  |`  S ) ) ) )
87imbi2d 330 . . . . 5  |-  ( x  =  0  ->  (
( ( S  e. 
{ RR ,  CC }  /\  F  e.  ( CC  ^pm  CC )
)  ->  ( dom  ( ( CC  Dn F ) `  x )  =  dom  F  ->  ( ( S  Dn ( F  |`  S ) ) `  x )  =  ( ( ( CC  Dn F ) `  x )  |`  S ) ) )  <->  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  CC ) )  ->  ( dom  ( ( CC  Dn F ) ` 
0 )  =  dom  F  ->  ( ( S  Dn ( F  |`  S ) ) ` 
0 )  =  ( ( ( CC  Dn F ) ` 
0 )  |`  S ) ) ) ) )
9 fveq2 6191 . . . . . . . . 9  |-  ( x  =  n  ->  (
( CC  Dn
F ) `  x
)  =  ( ( CC  Dn F ) `  n ) )
109dmeqd 5326 . . . . . . . 8  |-  ( x  =  n  ->  dom  ( ( CC  Dn F ) `  x )  =  dom  ( ( CC  Dn F ) `  n ) )
1110eqeq1d 2624 . . . . . . 7  |-  ( x  =  n  ->  ( dom  ( ( CC  Dn F ) `  x )  =  dom  F  <->  dom  ( ( CC  Dn F ) `  n )  =  dom  F ) )
12 fveq2 6191 . . . . . . . 8  |-  ( x  =  n  ->  (
( S  Dn
( F  |`  S ) ) `  x )  =  ( ( S  Dn ( F  |`  S ) ) `  n ) )
139reseq1d 5395 . . . . . . . 8  |-  ( x  =  n  ->  (
( ( CC  Dn F ) `  x )  |`  S )  =  ( ( ( CC  Dn F ) `  n )  |`  S ) )
1412, 13eqeq12d 2637 . . . . . . 7  |-  ( x  =  n  ->  (
( ( S  Dn ( F  |`  S ) ) `  x )  =  ( ( ( CC  Dn F ) `  x )  |`  S )  <-> 
( ( S  Dn ( F  |`  S ) ) `  n )  =  ( ( ( CC  Dn F ) `  n )  |`  S ) ) )
1511, 14imbi12d 334 . . . . . 6  |-  ( x  =  n  ->  (
( dom  ( ( CC  Dn F ) `
 x )  =  dom  F  ->  (
( S  Dn
( F  |`  S ) ) `  x )  =  ( ( ( CC  Dn F ) `  x )  |`  S ) )  <->  ( dom  ( ( CC  Dn F ) `  n )  =  dom  F  ->  ( ( S  Dn ( F  |`  S ) ) `  n )  =  ( ( ( CC  Dn F ) `  n )  |`  S ) ) ) )
1615imbi2d 330 . . . . 5  |-  ( x  =  n  ->  (
( ( S  e. 
{ RR ,  CC }  /\  F  e.  ( CC  ^pm  CC )
)  ->  ( dom  ( ( CC  Dn F ) `  x )  =  dom  F  ->  ( ( S  Dn ( F  |`  S ) ) `  x )  =  ( ( ( CC  Dn F ) `  x )  |`  S ) ) )  <->  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  CC ) )  ->  ( dom  ( ( CC  Dn F ) `  n )  =  dom  F  ->  ( ( S  Dn ( F  |`  S ) ) `  n )  =  ( ( ( CC  Dn F ) `  n )  |`  S ) ) ) ) )
17 fveq2 6191 . . . . . . . . 9  |-  ( x  =  ( n  + 
1 )  ->  (
( CC  Dn
F ) `  x
)  =  ( ( CC  Dn F ) `  ( n  +  1 ) ) )
1817dmeqd 5326 . . . . . . . 8  |-  ( x  =  ( n  + 
1 )  ->  dom  ( ( CC  Dn F ) `  x )  =  dom  ( ( CC  Dn F ) `  ( n  +  1
) ) )
1918eqeq1d 2624 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  ( dom  ( ( CC  Dn F ) `  x )  =  dom  F  <->  dom  ( ( CC  Dn F ) `  ( n  +  1
) )  =  dom  F ) )
20 fveq2 6191 . . . . . . . 8  |-  ( x  =  ( n  + 
1 )  ->  (
( S  Dn
( F  |`  S ) ) `  x )  =  ( ( S  Dn ( F  |`  S ) ) `  ( n  +  1
) ) )
2117reseq1d 5395 . . . . . . . 8  |-  ( x  =  ( n  + 
1 )  ->  (
( ( CC  Dn F ) `  x )  |`  S )  =  ( ( ( CC  Dn F ) `  ( n  +  1 ) )  |`  S ) )
2220, 21eqeq12d 2637 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (
( ( S  Dn ( F  |`  S ) ) `  x )  =  ( ( ( CC  Dn F ) `  x )  |`  S )  <-> 
( ( S  Dn ( F  |`  S ) ) `  ( n  +  1
) )  =  ( ( ( CC  Dn F ) `  ( n  +  1
) )  |`  S ) ) )
2319, 22imbi12d 334 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
( dom  ( ( CC  Dn F ) `
 x )  =  dom  F  ->  (
( S  Dn
( F  |`  S ) ) `  x )  =  ( ( ( CC  Dn F ) `  x )  |`  S ) )  <->  ( dom  ( ( CC  Dn F ) `  ( n  +  1
) )  =  dom  F  ->  ( ( S  Dn ( F  |`  S ) ) `  ( n  +  1
) )  =  ( ( ( CC  Dn F ) `  ( n  +  1
) )  |`  S ) ) ) )
2423imbi2d 330 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
( ( S  e. 
{ RR ,  CC }  /\  F  e.  ( CC  ^pm  CC )
)  ->  ( dom  ( ( CC  Dn F ) `  x )  =  dom  F  ->  ( ( S  Dn ( F  |`  S ) ) `  x )  =  ( ( ( CC  Dn F ) `  x )  |`  S ) ) )  <->  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  CC ) )  ->  ( dom  ( ( CC  Dn F ) `  ( n  +  1
) )  =  dom  F  ->  ( ( S  Dn ( F  |`  S ) ) `  ( n  +  1
) )  =  ( ( ( CC  Dn F ) `  ( n  +  1
) )  |`  S ) ) ) ) )
25 fveq2 6191 . . . . . . . . 9  |-  ( x  =  N  ->  (
( CC  Dn
F ) `  x
)  =  ( ( CC  Dn F ) `  N ) )
2625dmeqd 5326 . . . . . . . 8  |-  ( x  =  N  ->  dom  ( ( CC  Dn F ) `  x )  =  dom  ( ( CC  Dn F ) `  N ) )
2726eqeq1d 2624 . . . . . . 7  |-  ( x  =  N  ->  ( dom  ( ( CC  Dn F ) `  x )  =  dom  F  <->  dom  ( ( CC  Dn F ) `  N )  =  dom  F ) )
28 fveq2 6191 . . . . . . . 8  |-  ( x  =  N  ->  (
( S  Dn
( F  |`  S ) ) `  x )  =  ( ( S  Dn ( F  |`  S ) ) `  N ) )
2925reseq1d 5395 . . . . . . . 8  |-  ( x  =  N  ->  (
( ( CC  Dn F ) `  x )  |`  S )  =  ( ( ( CC  Dn F ) `  N )  |`  S ) )
3028, 29eqeq12d 2637 . . . . . . 7  |-  ( x  =  N  ->  (
( ( S  Dn ( F  |`  S ) ) `  x )  =  ( ( ( CC  Dn F ) `  x )  |`  S )  <-> 
( ( S  Dn ( F  |`  S ) ) `  N )  =  ( ( ( CC  Dn F ) `  N )  |`  S ) ) )
3127, 30imbi12d 334 . . . . . 6  |-  ( x  =  N  ->  (
( dom  ( ( CC  Dn F ) `
 x )  =  dom  F  ->  (
( S  Dn
( F  |`  S ) ) `  x )  =  ( ( ( CC  Dn F ) `  x )  |`  S ) )  <->  ( dom  ( ( CC  Dn F ) `  N )  =  dom  F  ->  ( ( S  Dn ( F  |`  S ) ) `  N )  =  ( ( ( CC  Dn F ) `  N )  |`  S ) ) ) )
3231imbi2d 330 . . . . 5  |-  ( x  =  N  ->  (
( ( S  e. 
{ RR ,  CC }  /\  F  e.  ( CC  ^pm  CC )
)  ->  ( dom  ( ( CC  Dn F ) `  x )  =  dom  F  ->  ( ( S  Dn ( F  |`  S ) ) `  x )  =  ( ( ( CC  Dn F ) `  x )  |`  S ) ) )  <->  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  CC ) )  ->  ( dom  ( ( CC  Dn F ) `  N )  =  dom  F  ->  ( ( S  Dn ( F  |`  S ) ) `  N )  =  ( ( ( CC  Dn F ) `  N )  |`  S ) ) ) ) )
33 recnprss 23668 . . . . . . . . 9  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
3433adantr 481 . . . . . . . 8  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  CC ) )  ->  S  C_  CC )
35 pmresg 7885 . . . . . . . 8  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  CC ) )  ->  ( F  |`  S )  e.  ( CC  ^pm  S
) )
36 dvn0 23687 . . . . . . . 8  |-  ( ( S  C_  CC  /\  ( F  |`  S )  e.  ( CC  ^pm  S
) )  ->  (
( S  Dn
( F  |`  S ) ) `  0 )  =  ( F  |`  S ) )
3734, 35, 36syl2anc 693 . . . . . . 7  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  CC ) )  ->  (
( S  Dn
( F  |`  S ) ) `  0 )  =  ( F  |`  S ) )
38 ssid 3624 . . . . . . . . . 10  |-  CC  C_  CC
3938a1i 11 . . . . . . . . 9  |-  ( S  e.  { RR ,  CC }  ->  CC  C_  CC )
40 dvn0 23687 . . . . . . . . 9  |-  ( ( CC  C_  CC  /\  F  e.  ( CC  ^pm  CC ) )  ->  (
( CC  Dn
F ) `  0
)  =  F )
4139, 40sylan 488 . . . . . . . 8  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  CC ) )  ->  (
( CC  Dn
F ) `  0
)  =  F )
4241reseq1d 5395 . . . . . . 7  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  CC ) )  ->  (
( ( CC  Dn F ) ` 
0 )  |`  S )  =  ( F  |`  S ) )
4337, 42eqtr4d 2659 . . . . . 6  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  CC ) )  ->  (
( S  Dn
( F  |`  S ) ) `  0 )  =  ( ( ( CC  Dn F ) `  0 )  |`  S ) )
4443a1d 25 . . . . 5  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  CC ) )  ->  ( dom  ( ( CC  Dn F ) ` 
0 )  =  dom  F  ->  ( ( S  Dn ( F  |`  S ) ) ` 
0 )  =  ( ( ( CC  Dn F ) ` 
0 )  |`  S ) ) )
45 cnelprrecn 10029 . . . . . . . . . . . . 13  |-  CC  e.  { RR ,  CC }
4645a1i 11 . . . . . . . . . . . 12  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  ( n  e.  NN0  /\ 
dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F ) )  ->  CC  e.  { RR ,  CC } )
47 simplr 792 . . . . . . . . . . . 12  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  ( n  e.  NN0  /\ 
dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F ) )  ->  F  e.  ( CC  ^pm  CC )
)
48 simprl 794 . . . . . . . . . . . 12  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  ( n  e.  NN0  /\ 
dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F ) )  ->  n  e.  NN0 )
49 dvnbss 23691 . . . . . . . . . . . 12  |-  ( ( CC  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  CC )  /\  n  e.  NN0 )  ->  dom  ( ( CC  Dn F ) `
 n )  C_  dom  F )
5046, 47, 48, 49syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  ( n  e.  NN0  /\ 
dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F ) )  ->  dom  ( ( CC  Dn F ) `
 n )  C_  dom  F )
51 simprr 796 . . . . . . . . . . . . 13  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  ( n  e.  NN0  /\ 
dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F ) )  ->  dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F )
5238a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  ( n  e.  NN0  /\ 
dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F ) )  ->  CC  C_  CC )
53 dvnp1 23688 . . . . . . . . . . . . . . 15  |-  ( ( CC  C_  CC  /\  F  e.  ( CC  ^pm  CC )  /\  n  e.  NN0 )  ->  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  ( CC  _D  (
( CC  Dn
F ) `  n
) ) )
5452, 47, 48, 53syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  ( n  e.  NN0  /\ 
dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F ) )  ->  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  ( CC  _D  (
( CC  Dn
F ) `  n
) ) )
5554dmeqd 5326 . . . . . . . . . . . . 13  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  ( n  e.  NN0  /\ 
dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F ) )  ->  dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  ( CC  _D  ( ( CC  Dn F ) `  n ) ) )
5651, 55eqtr3d 2658 . . . . . . . . . . . 12  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  ( n  e.  NN0  /\ 
dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F ) )  ->  dom  F  =  dom  ( CC  _D  (
( CC  Dn
F ) `  n
) ) )
57 dvnf 23690 . . . . . . . . . . . . . 14  |-  ( ( CC  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  CC )  /\  n  e.  NN0 )  ->  ( ( CC  Dn F ) `
 n ) : dom  ( ( CC  Dn F ) `
 n ) --> CC )
5846, 47, 48, 57syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  ( n  e.  NN0  /\ 
dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F ) )  ->  ( ( CC  Dn F ) `
 n ) : dom  ( ( CC  Dn F ) `
 n ) --> CC )
59 cnex 10017 . . . . . . . . . . . . . . . . 17  |-  CC  e.  _V
6059, 59elpm2 7889 . . . . . . . . . . . . . . . 16  |-  ( F  e.  ( CC  ^pm  CC )  <->  ( F : dom  F --> CC  /\  dom  F 
C_  CC ) )
6160simprbi 480 . . . . . . . . . . . . . . 15  |-  ( F  e.  ( CC  ^pm  CC )  ->  dom  F  C_  CC )
6247, 61syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  ( n  e.  NN0  /\ 
dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F ) )  ->  dom  F  C_  CC )
6350, 62sstrd 3613 . . . . . . . . . . . . 13  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  ( n  e.  NN0  /\ 
dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F ) )  ->  dom  ( ( CC  Dn F ) `
 n )  C_  CC )
6452, 58, 63dvbss 23665 . . . . . . . . . . . 12  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  ( n  e.  NN0  /\ 
dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F ) )  ->  dom  ( CC  _D  ( ( CC  Dn F ) `  n ) )  C_  dom  ( ( CC  Dn F ) `  n ) )
6556, 64eqsstrd 3639 . . . . . . . . . . 11  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  ( n  e.  NN0  /\ 
dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F ) )  ->  dom  F  C_  dom  ( ( CC  Dn F ) `  n ) )
6650, 65eqssd 3620 . . . . . . . . . 10  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  ( n  e.  NN0  /\ 
dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F ) )  ->  dom  ( ( CC  Dn F ) `
 n )  =  dom  F )
6766expr 643 . . . . . . . . 9  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  n  e.  NN0 )  -> 
( dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F  ->  dom  ( ( CC  Dn F ) `  n )  =  dom  F ) )
6867imim1d 82 . . . . . . . 8  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  n  e.  NN0 )  -> 
( ( dom  (
( CC  Dn
F ) `  n
)  =  dom  F  ->  ( ( S  Dn ( F  |`  S ) ) `  n )  =  ( ( ( CC  Dn F ) `  n )  |`  S ) )  ->  ( dom  ( ( CC  Dn F ) `  ( n  +  1
) )  =  dom  F  ->  ( ( S  Dn ( F  |`  S ) ) `  n )  =  ( ( ( CC  Dn F ) `  n )  |`  S ) ) ) )
69 oveq2 6658 . . . . . . . . . . 11  |-  ( ( ( S  Dn
( F  |`  S ) ) `  n )  =  ( ( ( CC  Dn F ) `  n )  |`  S )  ->  ( S  _D  ( ( S  Dn ( F  |`  S ) ) `  n ) )  =  ( S  _D  (
( ( CC  Dn F ) `  n )  |`  S ) ) )
7034adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  ( n  e.  NN0  /\ 
dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F ) )  ->  S  C_  CC )
7135adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  ( n  e.  NN0  /\ 
dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F ) )  ->  ( F  |`  S )  e.  ( CC  ^pm  S )
)
72 dvnp1 23688 . . . . . . . . . . . . 13  |-  ( ( S  C_  CC  /\  ( F  |`  S )  e.  ( CC  ^pm  S
)  /\  n  e.  NN0 )  ->  ( ( S  Dn ( F  |`  S ) ) `  ( n  +  1
) )  =  ( S  _D  ( ( S  Dn ( F  |`  S )
) `  n )
) )
7370, 71, 48, 72syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  ( n  e.  NN0  /\ 
dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F ) )  ->  ( ( S  Dn ( F  |`  S ) ) `  ( n  +  1
) )  =  ( S  _D  ( ( S  Dn ( F  |`  S )
) `  n )
) )
7454reseq1d 5395 . . . . . . . . . . . . 13  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  ( n  e.  NN0  /\ 
dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F ) )  ->  ( ( ( CC  Dn F ) `  ( n  +  1 ) )  |`  S )  =  ( ( CC  _D  (
( CC  Dn
F ) `  n
) )  |`  S ) )
75 simpll 790 . . . . . . . . . . . . . 14  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  ( n  e.  NN0  /\ 
dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F ) )  ->  S  e.  { RR ,  CC } )
76 eqid 2622 . . . . . . . . . . . . . . . . . 18  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
7776cnfldtop 22587 . . . . . . . . . . . . . . . . 17  |-  ( TopOpen ` fld )  e.  Top
7876cnfldtopon 22586 . . . . . . . . . . . . . . . . . . 19  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
7978toponunii 20721 . . . . . . . . . . . . . . . . . 18  |-  CC  =  U. ( TopOpen ` fld )
8079ntrss2 20861 . . . . . . . . . . . . . . . . 17  |-  ( ( ( TopOpen ` fld )  e.  Top  /\ 
dom  ( ( CC  Dn F ) `
 n )  C_  CC )  ->  ( ( int `  ( TopOpen ` fld )
) `  dom  ( ( CC  Dn F ) `  n ) )  C_  dom  ( ( CC  Dn F ) `  n ) )
8177, 63, 80sylancr 695 . . . . . . . . . . . . . . . 16  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  ( n  e.  NN0  /\ 
dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F ) )  ->  ( ( int `  ( TopOpen ` fld ) ) `  dom  ( ( CC  Dn F ) `  n ) )  C_  dom  ( ( CC  Dn F ) `  n ) )
8279restid 16094 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
8377, 82ax-mp 5 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
8483eqcomi 2631 . . . . . . . . . . . . . . . . . . 19  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
8552, 58, 63, 84, 76dvbssntr 23664 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  ( n  e.  NN0  /\ 
dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F ) )  ->  dom  ( CC  _D  ( ( CC  Dn F ) `  n ) )  C_  ( ( int `  ( TopOpen
` fld
) ) `  dom  ( ( CC  Dn F ) `  n ) ) )
8656, 85eqsstrd 3639 . . . . . . . . . . . . . . . . 17  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  ( n  e.  NN0  /\ 
dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F ) )  ->  dom  F  C_  (
( int `  ( TopOpen
` fld
) ) `  dom  ( ( CC  Dn F ) `  n ) ) )
8750, 86sstrd 3613 . . . . . . . . . . . . . . . 16  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  ( n  e.  NN0  /\ 
dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F ) )  ->  dom  ( ( CC  Dn F ) `
 n )  C_  ( ( int `  ( TopOpen
` fld
) ) `  dom  ( ( CC  Dn F ) `  n ) ) )
8881, 87eqssd 3620 . . . . . . . . . . . . . . 15  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  ( n  e.  NN0  /\ 
dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F ) )  ->  ( ( int `  ( TopOpen ` fld ) ) `  dom  ( ( CC  Dn F ) `  n ) )  =  dom  ( ( CC  Dn F ) `
 n ) )
8979isopn3 20870 . . . . . . . . . . . . . . . 16  |-  ( ( ( TopOpen ` fld )  e.  Top  /\ 
dom  ( ( CC  Dn F ) `
 n )  C_  CC )  ->  ( dom  ( ( CC  Dn F ) `  n )  e.  (
TopOpen ` fld )  <->  ( ( int `  ( TopOpen ` fld ) ) `  dom  ( ( CC  Dn F ) `  n ) )  =  dom  ( ( CC  Dn F ) `
 n ) ) )
9077, 63, 89sylancr 695 . . . . . . . . . . . . . . 15  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  ( n  e.  NN0  /\ 
dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F ) )  ->  ( dom  (
( CC  Dn
F ) `  n
)  e.  ( TopOpen ` fld )  <->  ( ( int `  ( TopOpen
` fld
) ) `  dom  ( ( CC  Dn F ) `  n ) )  =  dom  ( ( CC  Dn F ) `
 n ) ) )
9188, 90mpbird 247 . . . . . . . . . . . . . 14  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  ( n  e.  NN0  /\ 
dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F ) )  ->  dom  ( ( CC  Dn F ) `
 n )  e.  ( TopOpen ` fld ) )
9266, 56eqtr2d 2657 . . . . . . . . . . . . . 14  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  ( n  e.  NN0  /\ 
dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F ) )  ->  dom  ( CC  _D  ( ( CC  Dn F ) `  n ) )  =  dom  ( ( CC  Dn F ) `
 n ) )
9376dvres3a 23678 . . . . . . . . . . . . . 14  |-  ( ( ( S  e.  { RR ,  CC }  /\  ( ( CC  Dn F ) `  n ) : dom  ( ( CC  Dn F ) `  n ) --> CC )  /\  ( dom  (
( CC  Dn
F ) `  n
)  e.  ( TopOpen ` fld )  /\  dom  ( CC  _D  ( ( CC  Dn F ) `  n ) )  =  dom  ( ( CC  Dn F ) `
 n ) ) )  ->  ( S  _D  ( ( ( CC  Dn F ) `
 n )  |`  S ) )  =  ( ( CC  _D  ( ( CC  Dn F ) `  n ) )  |`  S ) )
9475, 58, 91, 92, 93syl22anc 1327 . . . . . . . . . . . . 13  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  ( n  e.  NN0  /\ 
dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F ) )  ->  ( S  _D  ( ( ( CC  Dn F ) `
 n )  |`  S ) )  =  ( ( CC  _D  ( ( CC  Dn F ) `  n ) )  |`  S ) )
9574, 94eqtr4d 2659 . . . . . . . . . . . 12  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  ( n  e.  NN0  /\ 
dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F ) )  ->  ( ( ( CC  Dn F ) `  ( n  +  1 ) )  |`  S )  =  ( S  _D  ( ( ( CC  Dn
F ) `  n
)  |`  S ) ) )
9673, 95eqeq12d 2637 . . . . . . . . . . 11  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  ( n  e.  NN0  /\ 
dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F ) )  ->  ( ( ( S  Dn ( F  |`  S )
) `  ( n  +  1 ) )  =  ( ( ( CC  Dn F ) `  ( n  +  1 ) )  |`  S )  <->  ( S  _D  ( ( S  Dn ( F  |`  S ) ) `  n ) )  =  ( S  _D  (
( ( CC  Dn F ) `  n )  |`  S ) ) ) )
9769, 96syl5ibr 236 . . . . . . . . . 10  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  ( n  e.  NN0  /\ 
dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F ) )  ->  ( ( ( S  Dn ( F  |`  S )
) `  n )  =  ( ( ( CC  Dn F ) `  n )  |`  S )  ->  (
( S  Dn
( F  |`  S ) ) `  ( n  +  1 ) )  =  ( ( ( CC  Dn F ) `  ( n  +  1 ) )  |`  S ) ) )
9897expr 643 . . . . . . . . 9  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  n  e.  NN0 )  -> 
( dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F  ->  (
( ( S  Dn ( F  |`  S ) ) `  n )  =  ( ( ( CC  Dn F ) `  n )  |`  S )  ->  ( ( S  Dn ( F  |`  S ) ) `  ( n  +  1
) )  =  ( ( ( CC  Dn F ) `  ( n  +  1
) )  |`  S ) ) ) )
9998a2d 29 . . . . . . . 8  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  n  e.  NN0 )  -> 
( ( dom  (
( CC  Dn
F ) `  (
n  +  1 ) )  =  dom  F  ->  ( ( S  Dn ( F  |`  S ) ) `  n )  =  ( ( ( CC  Dn F ) `  n )  |`  S ) )  ->  ( dom  ( ( CC  Dn F ) `  ( n  +  1
) )  =  dom  F  ->  ( ( S  Dn ( F  |`  S ) ) `  ( n  +  1
) )  =  ( ( ( CC  Dn F ) `  ( n  +  1
) )  |`  S ) ) ) )
10068, 99syld 47 . . . . . . 7  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  /\  n  e.  NN0 )  -> 
( ( dom  (
( CC  Dn
F ) `  n
)  =  dom  F  ->  ( ( S  Dn ( F  |`  S ) ) `  n )  =  ( ( ( CC  Dn F ) `  n )  |`  S ) )  ->  ( dom  ( ( CC  Dn F ) `  ( n  +  1
) )  =  dom  F  ->  ( ( S  Dn ( F  |`  S ) ) `  ( n  +  1
) )  =  ( ( ( CC  Dn F ) `  ( n  +  1
) )  |`  S ) ) ) )
101100expcom 451 . . . . . 6  |-  ( n  e.  NN0  ->  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  CC ) )  ->  (
( dom  ( ( CC  Dn F ) `
 n )  =  dom  F  ->  (
( S  Dn
( F  |`  S ) ) `  n )  =  ( ( ( CC  Dn F ) `  n )  |`  S ) )  -> 
( dom  ( ( CC  Dn F ) `
 ( n  + 
1 ) )  =  dom  F  ->  (
( S  Dn
( F  |`  S ) ) `  ( n  +  1 ) )  =  ( ( ( CC  Dn F ) `  ( n  +  1 ) )  |`  S ) ) ) ) )
102101a2d 29 . . . . 5  |-  ( n  e.  NN0  ->  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC ) )  -> 
( dom  ( ( CC  Dn F ) `
 n )  =  dom  F  ->  (
( S  Dn
( F  |`  S ) ) `  n )  =  ( ( ( CC  Dn F ) `  n )  |`  S ) ) )  ->  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  CC ) )  ->  ( dom  ( ( CC  Dn F ) `  ( n  +  1
) )  =  dom  F  ->  ( ( S  Dn ( F  |`  S ) ) `  ( n  +  1
) )  =  ( ( ( CC  Dn F ) `  ( n  +  1
) )  |`  S ) ) ) ) )
1038, 16, 24, 32, 44, 102nn0ind 11472 . . . 4  |-  ( N  e.  NN0  ->  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  CC ) )  ->  ( dom  ( ( CC  Dn F ) `  N )  =  dom  F  ->  ( ( S  Dn ( F  |`  S ) ) `  N )  =  ( ( ( CC  Dn F ) `  N )  |`  S ) ) ) )
104103com12 32 . . 3  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  CC ) )  ->  ( N  e.  NN0  ->  ( dom  ( ( CC  Dn F ) `  N )  =  dom  F  ->  ( ( S  Dn ( F  |`  S ) ) `  N )  =  ( ( ( CC  Dn F ) `  N )  |`  S ) ) ) )
1051043impia 1261 . 2  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  CC )  /\  N  e.  NN0 )  ->  ( dom  (
( CC  Dn
F ) `  N
)  =  dom  F  ->  ( ( S  Dn ( F  |`  S ) ) `  N )  =  ( ( ( CC  Dn F ) `  N )  |`  S ) ) )
106105imp 445 1  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
CC )  /\  N  e.  NN0 )  /\  dom  ( ( CC  Dn F ) `  N )  =  dom  F )  ->  ( ( S  Dn ( F  |`  S ) ) `  N )  =  ( ( ( CC  Dn F ) `  N )  |`  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    C_ wss 3574   {cpr 4179   dom cdm 5114    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^pm cpm 7858   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939   NN0cn0 11292   ↾t crest 16081   TopOpenctopn 16082  ℂfldccnfld 19746   Topctop 20698   intcnt 20821    _D cdv 23627    Dncdvn 23628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cnp 21032  df-haus 21119  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-limc 23630  df-dv 23631  df-dvn 23632
This theorem is referenced by:  cpnres  23700
  Copyright terms: Public domain W3C validator