| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xporderlem | Structured version Visualization version Unicode version | ||
| Description: Lemma for lexicographical ordering theorems. (Contributed by Scott Fenton, 16-Mar-2011.) |
| Ref | Expression |
|---|---|
| xporderlem.1 |
|
| Ref | Expression |
|---|---|
| xporderlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4654 |
. . 3
| |
| 2 | xporderlem.1 |
. . . 4
| |
| 3 | 2 | eleq2i 2693 |
. . 3
|
| 4 | 1, 3 | bitri 264 |
. 2
|
| 5 | opex 4932 |
. . 3
| |
| 6 | opex 4932 |
. . 3
| |
| 7 | eleq1 2689 |
. . . . . 6
| |
| 8 | opelxp 5146 |
. . . . . 6
| |
| 9 | 7, 8 | syl6bb 276 |
. . . . 5
|
| 10 | 9 | anbi1d 741 |
. . . 4
|
| 11 | vex 3203 |
. . . . . . 7
| |
| 12 | vex 3203 |
. . . . . . 7
| |
| 13 | 11, 12 | op1std 7178 |
. . . . . 6
|
| 14 | 13 | breq1d 4663 |
. . . . 5
|
| 15 | 13 | eqeq1d 2624 |
. . . . . 6
|
| 16 | 11, 12 | op2ndd 7179 |
. . . . . . 7
|
| 17 | 16 | breq1d 4663 |
. . . . . 6
|
| 18 | 15, 17 | anbi12d 747 |
. . . . 5
|
| 19 | 14, 18 | orbi12d 746 |
. . . 4
|
| 20 | 10, 19 | anbi12d 747 |
. . 3
|
| 21 | eleq1 2689 |
. . . . . 6
| |
| 22 | opelxp 5146 |
. . . . . 6
| |
| 23 | 21, 22 | syl6bb 276 |
. . . . 5
|
| 24 | 23 | anbi2d 740 |
. . . 4
|
| 25 | vex 3203 |
. . . . . . 7
| |
| 26 | vex 3203 |
. . . . . . 7
| |
| 27 | 25, 26 | op1std 7178 |
. . . . . 6
|
| 28 | 27 | breq2d 4665 |
. . . . 5
|
| 29 | 27 | eqeq2d 2632 |
. . . . . 6
|
| 30 | 25, 26 | op2ndd 7179 |
. . . . . . 7
|
| 31 | 30 | breq2d 4665 |
. . . . . 6
|
| 32 | 29, 31 | anbi12d 747 |
. . . . 5
|
| 33 | 28, 32 | orbi12d 746 |
. . . 4
|
| 34 | 24, 33 | anbi12d 747 |
. . 3
|
| 35 | 5, 6, 20, 34 | opelopab 4997 |
. 2
|
| 36 | an4 865 |
. . 3
| |
| 37 | 36 | anbi1i 731 |
. 2
|
| 38 | 4, 35, 37 | 3bitri 286 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fv 5896 df-1st 7168 df-2nd 7169 |
| This theorem is referenced by: poxp 7289 soxp 7290 |
| Copyright terms: Public domain | W3C validator |