MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1st2ndprf Structured version   Visualization version   Unicode version

Theorem 1st2ndprf 16846
Description: Break a functor into a product category into first and second projections. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
1st2ndprf.t  |-  T  =  ( D  X.c  E )
1st2ndprf.f  |-  ( ph  ->  F  e.  ( C 
Func  T ) )
1st2ndprf.d  |-  ( ph  ->  D  e.  Cat )
1st2ndprf.e  |-  ( ph  ->  E  e.  Cat )
Assertion
Ref Expression
1st2ndprf  |-  ( ph  ->  F  =  ( ( ( D  1stF  E )  o.func  F ) ⟨,⟩F  ( ( D  2ndF  E )  o.func 
F ) ) )

Proof of Theorem 1st2ndprf
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . 6  |-  ( Base `  C )  =  (
Base `  C )
2 1st2ndprf.t . . . . . . 7  |-  T  =  ( D  X.c  E )
3 eqid 2622 . . . . . . 7  |-  ( Base `  D )  =  (
Base `  D )
4 eqid 2622 . . . . . . 7  |-  ( Base `  E )  =  (
Base `  E )
52, 3, 4xpcbas 16818 . . . . . 6  |-  ( (
Base `  D )  X.  ( Base `  E
) )  =  (
Base `  T )
6 relfunc 16522 . . . . . . 7  |-  Rel  ( C  Func  T )
7 1st2ndprf.f . . . . . . 7  |-  ( ph  ->  F  e.  ( C 
Func  T ) )
8 1st2ndbr 7217 . . . . . . 7  |-  ( ( Rel  ( C  Func  T )  /\  F  e.  ( C  Func  T
) )  ->  ( 1st `  F ) ( C  Func  T )
( 2nd `  F
) )
96, 7, 8sylancr 695 . . . . . 6  |-  ( ph  ->  ( 1st `  F
) ( C  Func  T ) ( 2nd `  F
) )
101, 5, 9funcf1 16526 . . . . 5  |-  ( ph  ->  ( 1st `  F
) : ( Base `  C ) --> ( (
Base `  D )  X.  ( Base `  E
) ) )
1110feqmptd 6249 . . . 4  |-  ( ph  ->  ( 1st `  F
)  =  ( x  e.  ( Base `  C
)  |->  ( ( 1st `  F ) `  x
) ) )
1210ffvelrnda 6359 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  F ) `  x )  e.  ( ( Base `  D
)  X.  ( Base `  E ) ) )
13 1st2nd2 7205 . . . . . . 7  |-  ( ( ( 1st `  F
) `  x )  e.  ( ( Base `  D
)  X.  ( Base `  E ) )  -> 
( ( 1st `  F
) `  x )  =  <. ( 1st `  (
( 1st `  F
) `  x )
) ,  ( 2nd `  ( ( 1st `  F
) `  x )
) >. )
1412, 13syl 17 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  F ) `  x )  =  <. ( 1st `  ( ( 1st `  F ) `
 x ) ) ,  ( 2nd `  (
( 1st `  F
) `  x )
) >. )
157adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  F  e.  ( C  Func  T ) )
16 1st2ndprf.d . . . . . . . . . . 11  |-  ( ph  ->  D  e.  Cat )
17 1st2ndprf.e . . . . . . . . . . 11  |-  ( ph  ->  E  e.  Cat )
18 eqid 2622 . . . . . . . . . . 11  |-  ( D  1stF  E )  =  ( D  1stF  E )
192, 16, 17, 181stfcl 16837 . . . . . . . . . 10  |-  ( ph  ->  ( D  1stF  E )  e.  ( T  Func  D
) )
2019adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( D  1stF  E )  e.  ( T 
Func  D ) )
21 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  x  e.  ( Base `  C )
)
221, 15, 20, 21cofu1 16544 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  ( ( D  1stF  E )  o.func  F )
) `  x )  =  ( ( 1st `  ( D  1stF  E )
) `  ( ( 1st `  F ) `  x ) ) )
23 eqid 2622 . . . . . . . . 9  |-  ( Hom  `  T )  =  ( Hom  `  T )
2416adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  D  e.  Cat )
2517adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  E  e.  Cat )
262, 5, 23, 24, 25, 18, 121stf1 16832 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  ( D  1stF  E ) ) `  ( ( 1st `  F ) `
 x ) )  =  ( 1st `  (
( 1st `  F
) `  x )
) )
2722, 26eqtrd 2656 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  ( ( D  1stF  E )  o.func  F )
) `  x )  =  ( 1st `  (
( 1st `  F
) `  x )
) )
28 eqid 2622 . . . . . . . . . . 11  |-  ( D  2ndF  E )  =  ( D  2ndF  E )
292, 16, 17, 282ndfcl 16838 . . . . . . . . . 10  |-  ( ph  ->  ( D  2ndF  E )  e.  ( T  Func  E
) )
3029adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( D  2ndF  E )  e.  ( T 
Func  E ) )
311, 15, 30, 21cofu1 16544 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  ( ( D  2ndF  E )  o.func  F )
) `  x )  =  ( ( 1st `  ( D  2ndF  E )
) `  ( ( 1st `  F ) `  x ) ) )
322, 5, 23, 24, 25, 28, 122ndf1 16835 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  ( D  2ndF  E ) ) `  ( ( 1st `  F ) `
 x ) )  =  ( 2nd `  (
( 1st `  F
) `  x )
) )
3331, 32eqtrd 2656 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  ( ( D  2ndF  E )  o.func  F )
) `  x )  =  ( 2nd `  (
( 1st `  F
) `  x )
) )
3427, 33opeq12d 4410 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  <. ( ( 1st `  ( ( D  1stF  E )  o.func  F )
) `  x ) ,  ( ( 1st `  ( ( D  2ndF  E )  o.func 
F ) ) `  x ) >.  =  <. ( 1st `  ( ( 1st `  F ) `
 x ) ) ,  ( 2nd `  (
( 1st `  F
) `  x )
) >. )
3514, 34eqtr4d 2659 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  F ) `  x )  =  <. ( ( 1st `  (
( D  1stF  E )  o.func  F ) ) `  x
) ,  ( ( 1st `  ( ( D  2ndF  E )  o.func  F )
) `  x ) >. )
3635mpteq2dva 4744 . . . 4  |-  ( ph  ->  ( x  e.  (
Base `  C )  |->  ( ( 1st `  F
) `  x )
)  =  ( x  e.  ( Base `  C
)  |->  <. ( ( 1st `  ( ( D  1stF  E )  o.func 
F ) ) `  x ) ,  ( ( 1st `  (
( D  2ndF  E )  o.func  F ) ) `  x
) >. ) )
3711, 36eqtrd 2656 . . 3  |-  ( ph  ->  ( 1st `  F
)  =  ( x  e.  ( Base `  C
)  |->  <. ( ( 1st `  ( ( D  1stF  E )  o.func 
F ) ) `  x ) ,  ( ( 1st `  (
( D  2ndF  E )  o.func  F ) ) `  x
) >. ) )
381, 9funcfn2 16529 . . . . 5  |-  ( ph  ->  ( 2nd `  F
)  Fn  ( (
Base `  C )  X.  ( Base `  C
) ) )
39 fnov 6768 . . . . 5  |-  ( ( 2nd `  F )  Fn  ( ( Base `  C )  X.  ( Base `  C ) )  <-> 
( 2nd `  F
)  =  ( x  e.  ( Base `  C
) ,  y  e.  ( Base `  C
)  |->  ( x ( 2nd `  F ) y ) ) )
4038, 39sylib 208 . . . 4  |-  ( ph  ->  ( 2nd `  F
)  =  ( x  e.  ( Base `  C
) ,  y  e.  ( Base `  C
)  |->  ( x ( 2nd `  F ) y ) ) )
41 eqid 2622 . . . . . . . . 9  |-  ( Hom  `  C )  =  ( Hom  `  C )
429adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  ( 1st `  F ) ( C  Func  T )
( 2nd `  F
) )
43 simprl 794 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  x  e.  ( Base `  C
) )
44 simprr 796 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  y  e.  ( Base `  C
) )
451, 41, 23, 42, 43, 44funcf2 16528 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
x ( 2nd `  F
) y ) : ( x ( Hom  `  C ) y ) --> ( ( ( 1st `  F ) `  x
) ( Hom  `  T
) ( ( 1st `  F ) `  y
) ) )
4645feqmptd 6249 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
x ( 2nd `  F
) y )  =  ( f  e.  ( x ( Hom  `  C
) y )  |->  ( ( x ( 2nd `  F ) y ) `
 f ) ) )
472, 23relxpchom 16821 . . . . . . . . . 10  |-  Rel  (
( ( 1st `  F
) `  x )
( Hom  `  T ) ( ( 1st `  F
) `  y )
)
4845ffvelrnda 6359 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
( Hom  `  C ) y ) )  -> 
( ( x ( 2nd `  F ) y ) `  f
)  e.  ( ( ( 1st `  F
) `  x )
( Hom  `  T ) ( ( 1st `  F
) `  y )
) )
49 1st2nd 7214 . . . . . . . . . 10  |-  ( ( Rel  ( ( ( 1st `  F ) `
 x ) ( Hom  `  T )
( ( 1st `  F
) `  y )
)  /\  ( (
x ( 2nd `  F
) y ) `  f )  e.  ( ( ( 1st `  F
) `  x )
( Hom  `  T ) ( ( 1st `  F
) `  y )
) )  ->  (
( x ( 2nd `  F ) y ) `
 f )  = 
<. ( 1st `  (
( x ( 2nd `  F ) y ) `
 f ) ) ,  ( 2nd `  (
( x ( 2nd `  F ) y ) `
 f ) )
>. )
5047, 48, 49sylancr 695 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
( Hom  `  C ) y ) )  -> 
( ( x ( 2nd `  F ) y ) `  f
)  =  <. ( 1st `  ( ( x ( 2nd `  F
) y ) `  f ) ) ,  ( 2nd `  (
( x ( 2nd `  F ) y ) `
 f ) )
>. )
517ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
( Hom  `  C ) y ) )  ->  F  e.  ( C  Func  T ) )
5219ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
( Hom  `  C ) y ) )  -> 
( D  1stF  E )  e.  ( T  Func  D
) )
5343adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
( Hom  `  C ) y ) )  ->  x  e.  ( Base `  C ) )
5444adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
( Hom  `  C ) y ) )  -> 
y  e.  ( Base `  C ) )
55 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
( Hom  `  C ) y ) )  -> 
f  e.  ( x ( Hom  `  C
) y ) )
561, 51, 52, 53, 54, 41, 55cofu2 16546 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
( Hom  `  C ) y ) )  -> 
( ( x ( 2nd `  ( ( D  1stF  E )  o.func  F )
) y ) `  f )  =  ( ( ( ( 1st `  F ) `  x
) ( 2nd `  ( D  1stF  E ) ) ( ( 1st `  F
) `  y )
) `  ( (
x ( 2nd `  F
) y ) `  f ) ) )
5716adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  D  e.  Cat )
5817adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  E  e.  Cat )
5912adantrr 753 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
( 1st `  F
) `  x )  e.  ( ( Base `  D
)  X.  ( Base `  E ) ) )
6010ffvelrnda 6359 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  ( Base `  C )
)  ->  ( ( 1st `  F ) `  y )  e.  ( ( Base `  D
)  X.  ( Base `  E ) ) )
6160adantrl 752 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
( 1st `  F
) `  y )  e.  ( ( Base `  D
)  X.  ( Base `  E ) ) )
622, 5, 23, 57, 58, 18, 59, 611stf2 16833 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
( ( 1st `  F
) `  x )
( 2nd `  ( D  1stF  E ) ) ( ( 1st `  F
) `  y )
)  =  ( 1st  |`  ( ( ( 1st `  F ) `  x
) ( Hom  `  T
) ( ( 1st `  F ) `  y
) ) ) )
6362adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
( Hom  `  C ) y ) )  -> 
( ( ( 1st `  F ) `  x
) ( 2nd `  ( D  1stF  E ) ) ( ( 1st `  F
) `  y )
)  =  ( 1st  |`  ( ( ( 1st `  F ) `  x
) ( Hom  `  T
) ( ( 1st `  F ) `  y
) ) ) )
6463fveq1d 6193 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
( Hom  `  C ) y ) )  -> 
( ( ( ( 1st `  F ) `
 x ) ( 2nd `  ( D  1stF  E ) ) ( ( 1st `  F
) `  y )
) `  ( (
x ( 2nd `  F
) y ) `  f ) )  =  ( ( 1st  |`  (
( ( 1st `  F
) `  x )
( Hom  `  T ) ( ( 1st `  F
) `  y )
) ) `  (
( x ( 2nd `  F ) y ) `
 f ) ) )
65 fvres 6207 . . . . . . . . . . . 12  |-  ( ( ( x ( 2nd `  F ) y ) `
 f )  e.  ( ( ( 1st `  F ) `  x
) ( Hom  `  T
) ( ( 1st `  F ) `  y
) )  ->  (
( 1st  |`  ( ( ( 1st `  F
) `  x )
( Hom  `  T ) ( ( 1st `  F
) `  y )
) ) `  (
( x ( 2nd `  F ) y ) `
 f ) )  =  ( 1st `  (
( x ( 2nd `  F ) y ) `
 f ) ) )
6648, 65syl 17 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
( Hom  `  C ) y ) )  -> 
( ( 1st  |`  (
( ( 1st `  F
) `  x )
( Hom  `  T ) ( ( 1st `  F
) `  y )
) ) `  (
( x ( 2nd `  F ) y ) `
 f ) )  =  ( 1st `  (
( x ( 2nd `  F ) y ) `
 f ) ) )
6756, 64, 663eqtrd 2660 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
( Hom  `  C ) y ) )  -> 
( ( x ( 2nd `  ( ( D  1stF  E )  o.func  F )
) y ) `  f )  =  ( 1st `  ( ( x ( 2nd `  F
) y ) `  f ) ) )
6829ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
( Hom  `  C ) y ) )  -> 
( D  2ndF  E )  e.  ( T  Func  E
) )
691, 51, 68, 53, 54, 41, 55cofu2 16546 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
( Hom  `  C ) y ) )  -> 
( ( x ( 2nd `  ( ( D  2ndF  E )  o.func  F )
) y ) `  f )  =  ( ( ( ( 1st `  F ) `  x
) ( 2nd `  ( D  2ndF  E ) ) ( ( 1st `  F
) `  y )
) `  ( (
x ( 2nd `  F
) y ) `  f ) ) )
702, 5, 23, 57, 58, 28, 59, 612ndf2 16836 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
( ( 1st `  F
) `  x )
( 2nd `  ( D  2ndF  E ) ) ( ( 1st `  F
) `  y )
)  =  ( 2nd  |`  ( ( ( 1st `  F ) `  x
) ( Hom  `  T
) ( ( 1st `  F ) `  y
) ) ) )
7170adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
( Hom  `  C ) y ) )  -> 
( ( ( 1st `  F ) `  x
) ( 2nd `  ( D  2ndF  E ) ) ( ( 1st `  F
) `  y )
)  =  ( 2nd  |`  ( ( ( 1st `  F ) `  x
) ( Hom  `  T
) ( ( 1st `  F ) `  y
) ) ) )
7271fveq1d 6193 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
( Hom  `  C ) y ) )  -> 
( ( ( ( 1st `  F ) `
 x ) ( 2nd `  ( D  2ndF  E ) ) ( ( 1st `  F
) `  y )
) `  ( (
x ( 2nd `  F
) y ) `  f ) )  =  ( ( 2nd  |`  (
( ( 1st `  F
) `  x )
( Hom  `  T ) ( ( 1st `  F
) `  y )
) ) `  (
( x ( 2nd `  F ) y ) `
 f ) ) )
73 fvres 6207 . . . . . . . . . . . 12  |-  ( ( ( x ( 2nd `  F ) y ) `
 f )  e.  ( ( ( 1st `  F ) `  x
) ( Hom  `  T
) ( ( 1st `  F ) `  y
) )  ->  (
( 2nd  |`  ( ( ( 1st `  F
) `  x )
( Hom  `  T ) ( ( 1st `  F
) `  y )
) ) `  (
( x ( 2nd `  F ) y ) `
 f ) )  =  ( 2nd `  (
( x ( 2nd `  F ) y ) `
 f ) ) )
7448, 73syl 17 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
( Hom  `  C ) y ) )  -> 
( ( 2nd  |`  (
( ( 1st `  F
) `  x )
( Hom  `  T ) ( ( 1st `  F
) `  y )
) ) `  (
( x ( 2nd `  F ) y ) `
 f ) )  =  ( 2nd `  (
( x ( 2nd `  F ) y ) `
 f ) ) )
7569, 72, 743eqtrd 2660 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
( Hom  `  C ) y ) )  -> 
( ( x ( 2nd `  ( ( D  2ndF  E )  o.func  F )
) y ) `  f )  =  ( 2nd `  ( ( x ( 2nd `  F
) y ) `  f ) ) )
7667, 75opeq12d 4410 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
( Hom  `  C ) y ) )  ->  <. ( ( x ( 2nd `  ( ( D  1stF  E )  o.func  F )
) y ) `  f ) ,  ( ( x ( 2nd `  ( ( D  2ndF  E )  o.func 
F ) ) y ) `  f )
>.  =  <. ( 1st `  ( ( x ( 2nd `  F ) y ) `  f
) ) ,  ( 2nd `  ( ( x ( 2nd `  F
) y ) `  f ) ) >.
)
7750, 76eqtr4d 2659 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
( Hom  `  C ) y ) )  -> 
( ( x ( 2nd `  F ) y ) `  f
)  =  <. (
( x ( 2nd `  ( ( D  1stF  E )  o.func 
F ) ) y ) `  f ) ,  ( ( x ( 2nd `  (
( D  2ndF  E )  o.func  F ) ) y ) `
 f ) >.
)
7877mpteq2dva 4744 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
f  e.  ( x ( Hom  `  C
) y )  |->  ( ( x ( 2nd `  F ) y ) `
 f ) )  =  ( f  e.  ( x ( Hom  `  C ) y ) 
|->  <. ( ( x ( 2nd `  (
( D  1stF  E )  o.func  F ) ) y ) `
 f ) ,  ( ( x ( 2nd `  ( ( D  2ndF  E )  o.func  F )
) y ) `  f ) >. )
)
7946, 78eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
x ( 2nd `  F
) y )  =  ( f  e.  ( x ( Hom  `  C
) y )  |->  <.
( ( x ( 2nd `  ( ( D  1stF  E )  o.func  F )
) y ) `  f ) ,  ( ( x ( 2nd `  ( ( D  2ndF  E )  o.func 
F ) ) y ) `  f )
>. ) )
80793impb 1260 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )  /\  y  e.  ( Base `  C ) )  ->  ( x ( 2nd `  F ) y )  =  ( f  e.  ( x ( Hom  `  C
) y )  |->  <.
( ( x ( 2nd `  ( ( D  1stF  E )  o.func  F )
) y ) `  f ) ,  ( ( x ( 2nd `  ( ( D  2ndF  E )  o.func 
F ) ) y ) `  f )
>. ) )
8180mpt2eq3dva 6719 . . . 4  |-  ( ph  ->  ( x  e.  (
Base `  C ) ,  y  e.  ( Base `  C )  |->  ( x ( 2nd `  F
) y ) )  =  ( x  e.  ( Base `  C
) ,  y  e.  ( Base `  C
)  |->  ( f  e.  ( x ( Hom  `  C ) y ) 
|->  <. ( ( x ( 2nd `  (
( D  1stF  E )  o.func  F ) ) y ) `
 f ) ,  ( ( x ( 2nd `  ( ( D  2ndF  E )  o.func  F )
) y ) `  f ) >. )
) )
8240, 81eqtrd 2656 . . 3  |-  ( ph  ->  ( 2nd `  F
)  =  ( x  e.  ( Base `  C
) ,  y  e.  ( Base `  C
)  |->  ( f  e.  ( x ( Hom  `  C ) y ) 
|->  <. ( ( x ( 2nd `  (
( D  1stF  E )  o.func  F ) ) y ) `
 f ) ,  ( ( x ( 2nd `  ( ( D  2ndF  E )  o.func  F )
) y ) `  f ) >. )
) )
8337, 82opeq12d 4410 . 2  |-  ( ph  -> 
<. ( 1st `  F
) ,  ( 2nd `  F ) >.  =  <. ( x  e.  ( Base `  C )  |->  <. (
( 1st `  (
( D  1stF  E )  o.func  F ) ) `  x
) ,  ( ( 1st `  ( ( D  2ndF  E )  o.func  F )
) `  x ) >. ) ,  ( x  e.  ( Base `  C
) ,  y  e.  ( Base `  C
)  |->  ( f  e.  ( x ( Hom  `  C ) y ) 
|->  <. ( ( x ( 2nd `  (
( D  1stF  E )  o.func  F ) ) y ) `
 f ) ,  ( ( x ( 2nd `  ( ( D  2ndF  E )  o.func  F )
) y ) `  f ) >. )
) >. )
84 1st2nd 7214 . . 3  |-  ( ( Rel  ( C  Func  T )  /\  F  e.  ( C  Func  T
) )  ->  F  =  <. ( 1st `  F
) ,  ( 2nd `  F ) >. )
856, 7, 84sylancr 695 . 2  |-  ( ph  ->  F  =  <. ( 1st `  F ) ,  ( 2nd `  F
) >. )
86 eqid 2622 . . 3  |-  ( ( ( D  1stF  E )  o.func  F ) ⟨,⟩F  ( ( D  2ndF  E )  o.func 
F ) )  =  ( ( ( D  1stF  E )  o.func  F ) ⟨,⟩F  ( ( D  2ndF  E )  o.func  F )
)
877, 19cofucl 16548 . . 3  |-  ( ph  ->  ( ( D  1stF  E )  o.func 
F )  e.  ( C  Func  D )
)
887, 29cofucl 16548 . . 3  |-  ( ph  ->  ( ( D  2ndF  E )  o.func 
F )  e.  ( C  Func  E )
)
8986, 1, 41, 87, 88prfval 16839 . 2  |-  ( ph  ->  ( ( ( D  1stF  E )  o.func  F ) ⟨,⟩F  ( ( D  2ndF  E )  o.func  F )
)  =  <. (
x  e.  ( Base `  C )  |->  <. (
( 1st `  (
( D  1stF  E )  o.func  F ) ) `  x
) ,  ( ( 1st `  ( ( D  2ndF  E )  o.func  F )
) `  x ) >. ) ,  ( x  e.  ( Base `  C
) ,  y  e.  ( Base `  C
)  |->  ( f  e.  ( x ( Hom  `  C ) y ) 
|->  <. ( ( x ( 2nd `  (
( D  1stF  E )  o.func  F ) ) y ) `
 f ) ,  ( ( x ( 2nd `  ( ( D  2ndF  E )  o.func  F )
) y ) `  f ) >. )
) >. )
9083, 85, 893eqtr4d 2666 1  |-  ( ph  ->  F  =  ( ( ( D  1stF  E )  o.func  F ) ⟨,⟩F  ( ( D  2ndF  E )  o.func 
F ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112    |` cres 5116   Rel wrel 5119    Fn wfn 5883   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   Basecbs 15857   Hom chom 15952   Catccat 16325    Func cfunc 16514    o.func ccofu 16516    X.c cxpc 16808    1stF c1stf 16809    2ndF c2ndf 16810   ⟨,⟩F cprf 16811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-hom 15966  df-cco 15967  df-cat 16329  df-cid 16330  df-func 16518  df-cofu 16520  df-xpc 16812  df-1stf 16813  df-2ndf 16814  df-prf 16815
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator