MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  npomex Structured version   Visualization version   Unicode version

Theorem npomex 9818
Description: A simplifying observation, and an indication of why any attempt to develop a theory of the real numbers without the Axiom of Infinity is doomed to failure: since every member of  P. is an infinite set, the negation of Infinity implies that  P., and hence 
RR, is empty. (Note that this proof, which used the fact that Dedekind cuts have no maximum, could just as well have used that they have no minimum, since they are downward-closed by prcdnq 9815 and nsmallnq 9799). (Contributed by Mario Carneiro, 11-May-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) (New usage is discouraged.)
Assertion
Ref Expression
npomex  |-  ( A  e.  P.  ->  om  e.  _V )

Proof of Theorem npomex
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3212 . . . 4  |-  ( A  e.  P.  ->  A  e.  _V )
2 prnmax 9817 . . . . . 6  |-  ( ( A  e.  P.  /\  x  e.  A )  ->  E. y  e.  A  x  <Q  y )
32ralrimiva 2966 . . . . 5  |-  ( A  e.  P.  ->  A. x  e.  A  E. y  e.  A  x  <Q  y )
4 prpssnq 9812 . . . . . . . . . . 11  |-  ( A  e.  P.  ->  A  C. 
Q. )
54pssssd 3704 . . . . . . . . . 10  |-  ( A  e.  P.  ->  A  C_ 
Q. )
6 ltsonq 9791 . . . . . . . . . 10  |-  <Q  Or  Q.
7 soss 5053 . . . . . . . . . 10  |-  ( A 
C_  Q.  ->  (  <Q  Or  Q.  ->  <Q  Or  A
) )
85, 6, 7mpisyl 21 . . . . . . . . 9  |-  ( A  e.  P.  ->  <Q  Or  A )
98adantr 481 . . . . . . . 8  |-  ( ( A  e.  P.  /\  A  e.  Fin )  ->  <Q  Or  A )
10 simpr 477 . . . . . . . 8  |-  ( ( A  e.  P.  /\  A  e.  Fin )  ->  A  e.  Fin )
11 prn0 9811 . . . . . . . . 9  |-  ( A  e.  P.  ->  A  =/=  (/) )
1211adantr 481 . . . . . . . 8  |-  ( ( A  e.  P.  /\  A  e.  Fin )  ->  A  =/=  (/) )
13 fimax2g 8206 . . . . . . . 8  |-  ( ( 
<Q  Or  A  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  -.  x  <Q  y )
149, 10, 12, 13syl3anc 1326 . . . . . . 7  |-  ( ( A  e.  P.  /\  A  e.  Fin )  ->  E. x  e.  A  A. y  e.  A  -.  x  <Q  y )
15 ralnex 2992 . . . . . . . . 9  |-  ( A. y  e.  A  -.  x  <Q  y  <->  -.  E. y  e.  A  x  <Q  y )
1615rexbii 3041 . . . . . . . 8  |-  ( E. x  e.  A  A. y  e.  A  -.  x  <Q  y  <->  E. x  e.  A  -.  E. y  e.  A  x  <Q  y )
17 rexnal 2995 . . . . . . . 8  |-  ( E. x  e.  A  -.  E. y  e.  A  x 
<Q  y  <->  -.  A. x  e.  A  E. y  e.  A  x  <Q  y )
1816, 17bitri 264 . . . . . . 7  |-  ( E. x  e.  A  A. y  e.  A  -.  x  <Q  y  <->  -.  A. x  e.  A  E. y  e.  A  x  <Q  y )
1914, 18sylib 208 . . . . . 6  |-  ( ( A  e.  P.  /\  A  e.  Fin )  ->  -.  A. x  e.  A  E. y  e.  A  x  <Q  y
)
2019ex 450 . . . . 5  |-  ( A  e.  P.  ->  ( A  e.  Fin  ->  -.  A. x  e.  A  E. y  e.  A  x  <Q  y ) )
213, 20mt2d 131 . . . 4  |-  ( A  e.  P.  ->  -.  A  e.  Fin )
22 nelne1 2890 . . . 4  |-  ( ( A  e.  _V  /\  -.  A  e.  Fin )  ->  _V  =/=  Fin )
231, 21, 22syl2anc 693 . . 3  |-  ( A  e.  P.  ->  _V  =/=  Fin )
2423necomd 2849 . 2  |-  ( A  e.  P.  ->  Fin  =/=  _V )
25 fineqv 8175 . . 3  |-  ( -. 
om  e.  _V  <->  Fin  =  _V )
2625necon1abii 2842 . 2  |-  ( Fin 
=/=  _V  <->  om  e.  _V )
2724, 26sylib 208 1  |-  ( A  e.  P.  ->  om  e.  _V )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   (/)c0 3915   class class class wbr 4653    Or wor 5034   omcom 7065   Fincfn 7955   Q.cnq 9674    <Q cltq 9680   P.cnp 9681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-ni 9694  df-mi 9696  df-lti 9697  df-ltpq 9732  df-enq 9733  df-nq 9734  df-ltnq 9740  df-np 9803
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator