Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pstmval Structured version   Visualization version   Unicode version

Theorem pstmval 29938
Description: Value of the metric induced by a pseudometric  D. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Hypothesis
Ref Expression
pstmval.1  |-  .~  =  (~Met `  D )
Assertion
Ref Expression
pstmval  |-  ( D  e.  (PsMet `  X
)  ->  (pstoMet `  D
)  =  ( a  e.  ( X /.  .~  ) ,  b  e.  ( X /.  .~  )  |->  U. { z  |  E. x  e.  a  E. y  e.  b  z  =  ( x D y ) } ) )
Distinct variable groups:    a, b, x, y, z, D    X, a, b, x, y, z    .~ , a, b, x, y, z

Proof of Theorem pstmval
Dummy variables  c 
d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pstm 29932 . . 3  |- pstoMet  =  ( d  e.  U. ran PsMet  |->  ( a  e.  ( dom  dom  d /. (~Met `  d ) ) ,  b  e.  ( dom  dom  d /. (~Met `  d ) ) 
|->  U. { z  |  E. x  e.  a  E. y  e.  b  z  =  ( x d y ) } ) )
21a1i 11 . 2  |-  ( D  e.  (PsMet `  X
)  -> pstoMet  =  ( d  e.  U. ran PsMet  |->  ( a  e.  ( dom  dom  d /. (~Met `  d
) ) ,  b  e.  ( dom  dom  d /. (~Met `  d
) )  |->  U. {
z  |  E. x  e.  a  E. y  e.  b  z  =  ( x d y ) } ) ) )
3 psmetdmdm 22110 . . . . . . . 8  |-  ( D  e.  (PsMet `  X
)  ->  X  =  dom  dom  D )
43adantr 481 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  X  =  dom  dom  D )
5 dmeq 5324 . . . . . . . . 9  |-  ( d  =  D  ->  dom  d  =  dom  D )
65dmeqd 5326 . . . . . . . 8  |-  ( d  =  D  ->  dom  dom  d  =  dom  dom  D )
76adantl 482 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  dom  dom  d  =  dom  dom  D )
84, 7eqtr4d 2659 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  X  =  dom  dom  d )
9 qseq1 7796 . . . . . 6  |-  ( X  =  dom  dom  d  ->  ( X /.  .~  )  =  ( dom  dom  d /.  .~  )
)
108, 9syl 17 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  ( X /.  .~  )  =  ( dom  dom  d /.  .~  ) )
11 fveq2 6191 . . . . . . . 8  |-  ( d  =  D  ->  (~Met `  d )  =  (~Met `  D ) )
12 pstmval.1 . . . . . . . 8  |-  .~  =  (~Met `  D )
1311, 12syl6reqr 2675 . . . . . . 7  |-  ( d  =  D  ->  .~  =  (~Met `  d ) )
14 qseq2 7797 . . . . . . 7  |-  (  .~  =  (~Met `  d )  ->  ( dom  dom  d /.  .~  )  =  ( dom  dom  d /. (~Met `  d ) ) )
1513, 14syl 17 . . . . . 6  |-  ( d  =  D  ->  ( dom  dom  d /.  .~  )  =  ( dom  dom  d /. (~Met `  d ) ) )
1615adantl 482 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  ( dom  dom  d /.  .~  )  =  ( dom  dom  d /. (~Met `  d ) ) )
1710, 16eqtr2d 2657 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  ( dom  dom  d /. (~Met `  d ) )  =  ( X /.  .~  ) )
18 mpt2eq12 6715 . . . 4  |-  ( ( ( dom  dom  d /. (~Met `  d )
)  =  ( X /.  .~  )  /\  ( dom  dom  d /. (~Met `  d ) )  =  ( X /.  .~  ) )  ->  (
a  e.  ( dom 
dom  d /. (~Met `  d ) ) ,  b  e.  ( dom 
dom  d /. (~Met `  d ) )  |->  U. { z  |  E. x  e.  a  E. y  e.  b  z  =  ( x d y ) } )  =  ( a  e.  ( X /.  .~  ) ,  b  e.  ( X /.  .~  )  |-> 
U. { z  |  E. x  e.  a  E. y  e.  b  z  =  ( x d y ) } ) )
1917, 17, 18syl2anc 693 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  (
a  e.  ( dom 
dom  d /. (~Met `  d ) ) ,  b  e.  ( dom 
dom  d /. (~Met `  d ) )  |->  U. { z  |  E. x  e.  a  E. y  e.  b  z  =  ( x d y ) } )  =  ( a  e.  ( X /.  .~  ) ,  b  e.  ( X /.  .~  )  |-> 
U. { z  |  E. x  e.  a  E. y  e.  b  z  =  ( x d y ) } ) )
20 simp1r 1086 . . . . . . . . 9  |-  ( ( ( D  e.  (PsMet `  X )  /\  d  =  D )  /\  a  e.  ( X /.  .~  )  /\  b  e.  ( X /.  .~  )
)  ->  d  =  D )
2120oveqd 6667 . . . . . . . 8  |-  ( ( ( D  e.  (PsMet `  X )  /\  d  =  D )  /\  a  e.  ( X /.  .~  )  /\  b  e.  ( X /.  .~  )
)  ->  ( x
d y )  =  ( x D y ) )
2221eqeq2d 2632 . . . . . . 7  |-  ( ( ( D  e.  (PsMet `  X )  /\  d  =  D )  /\  a  e.  ( X /.  .~  )  /\  b  e.  ( X /.  .~  )
)  ->  ( z  =  ( x d y )  <->  z  =  ( x D y ) ) )
23222rexbidv 3057 . . . . . 6  |-  ( ( ( D  e.  (PsMet `  X )  /\  d  =  D )  /\  a  e.  ( X /.  .~  )  /\  b  e.  ( X /.  .~  )
)  ->  ( E. x  e.  a  E. y  e.  b  z  =  ( x d y )  <->  E. x  e.  a  E. y  e.  b  z  =  ( x D y ) ) )
2423abbidv 2741 . . . . 5  |-  ( ( ( D  e.  (PsMet `  X )  /\  d  =  D )  /\  a  e.  ( X /.  .~  )  /\  b  e.  ( X /.  .~  )
)  ->  { z  |  E. x  e.  a  E. y  e.  b  z  =  ( x d y ) }  =  { z  |  E. x  e.  a  E. y  e.  b  z  =  ( x D y ) } )
2524unieqd 4446 . . . 4  |-  ( ( ( D  e.  (PsMet `  X )  /\  d  =  D )  /\  a  e.  ( X /.  .~  )  /\  b  e.  ( X /.  .~  )
)  ->  U. { z  |  E. x  e.  a  E. y  e.  b  z  =  ( x d y ) }  =  U. {
z  |  E. x  e.  a  E. y  e.  b  z  =  ( x D y ) } )
2625mpt2eq3dva 6719 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  (
a  e.  ( X /.  .~  ) ,  b  e.  ( X /.  .~  )  |->  U. { z  |  E. x  e.  a  E. y  e.  b  z  =  ( x d y ) } )  =  ( a  e.  ( X /.  .~  ) ,  b  e.  ( X /.  .~  )  |-> 
U. { z  |  E. x  e.  a  E. y  e.  b  z  =  ( x D y ) } ) )
2719, 26eqtrd 2656 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  (
a  e.  ( dom 
dom  d /. (~Met `  d ) ) ,  b  e.  ( dom 
dom  d /. (~Met `  d ) )  |->  U. { z  |  E. x  e.  a  E. y  e.  b  z  =  ( x d y ) } )  =  ( a  e.  ( X /.  .~  ) ,  b  e.  ( X /.  .~  )  |-> 
U. { z  |  E. x  e.  a  E. y  e.  b  z  =  ( x D y ) } ) )
28 elfvdm 6220 . . . 4  |-  ( D  e.  (PsMet `  X
)  ->  X  e.  dom PsMet )
29 fveq2 6191 . . . . . 6  |-  ( x  =  X  ->  (PsMet `  x )  =  (PsMet `  X ) )
3029eleq2d 2687 . . . . 5  |-  ( x  =  X  ->  ( D  e.  (PsMet `  x
)  <->  D  e.  (PsMet `  X ) ) )
3130rspcev 3309 . . . 4  |-  ( ( X  e.  dom PsMet  /\  D  e.  (PsMet `  X )
)  ->  E. x  e.  dom PsMet D  e.  (PsMet `  x ) )
3228, 31mpancom 703 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  E. x  e.  dom PsMet D  e.  (PsMet `  x ) )
33 df-psmet 19738 . . . . 5  |- PsMet  =  ( x  e.  _V  |->  { d  e.  ( RR*  ^m  ( x  X.  x
) )  |  A. a  e.  x  (
( a d a )  =  0  /\ 
A. b  e.  x  A. c  e.  x  ( a d b )  <_  ( (
c d a ) +e ( c d b ) ) ) } )
3433funmpt2 5927 . . . 4  |-  Fun PsMet
35 elunirn 6509 . . . 4  |-  ( Fun PsMet  ->  ( D  e.  U. ran PsMet  <->  E. x  e.  dom PsMet D  e.  (PsMet `  x
) ) )
3634, 35ax-mp 5 . . 3  |-  ( D  e.  U. ran PsMet  <->  E. x  e.  dom PsMet D  e.  (PsMet `  x ) )
3732, 36sylibr 224 . 2  |-  ( D  e.  (PsMet `  X
)  ->  D  e.  U.
ran PsMet )
38 elfvex 6221 . . . 4  |-  ( D  e.  (PsMet `  X
)  ->  X  e.  _V )
39 qsexg 7805 . . . 4  |-  ( X  e.  _V  ->  ( X /.  .~  )  e. 
_V )
4038, 39syl 17 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  ( X /.  .~  )  e.  _V )
41 mpt2exga 7246 . . 3  |-  ( ( ( X /.  .~  )  e.  _V  /\  ( X /.  .~  )  e. 
_V )  ->  (
a  e.  ( X /.  .~  ) ,  b  e.  ( X /.  .~  )  |->  U. { z  |  E. x  e.  a  E. y  e.  b  z  =  ( x D y ) } )  e.  _V )
4240, 40, 41syl2anc 693 . 2  |-  ( D  e.  (PsMet `  X
)  ->  ( a  e.  ( X /.  .~  ) ,  b  e.  ( X /.  .~  )  |-> 
U. { z  |  E. x  e.  a  E. y  e.  b  z  =  ( x D y ) } )  e.  _V )
432, 27, 37, 42fvmptd 6288 1  |-  ( D  e.  (PsMet `  X
)  ->  (pstoMet `  D
)  =  ( a  e.  ( X /.  .~  ) ,  b  e.  ( X /.  .~  )  |->  U. { z  |  E. x  e.  a  E. y  e.  b  z  =  ( x D y ) } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ran crn 5115   Fun wfun 5882   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   /.cqs 7741    ^m cmap 7857   0cc0 9936   RR*cxr 10073    <_ cle 10075   +ecxad 11944  PsMetcpsmet 19730  ~Metcmetid 29929  pstoMetcpstm 29930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-ec 7744  df-qs 7748  df-map 7859  df-xr 10078  df-psmet 19738  df-pstm 29932
This theorem is referenced by:  pstmfval  29939  pstmxmet  29940
  Copyright terms: Public domain W3C validator