Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metider Structured version   Visualization version   Unicode version

Theorem metider 29937
Description: The metric identification is an equivalence relation. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
metider  |-  ( D  e.  (PsMet `  X
)  ->  (~Met `  D
)  Er  X )

Proof of Theorem metider
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metidss 29934 . . . 4  |-  ( D  e.  (PsMet `  X
)  ->  (~Met `  D
)  C_  ( X  X.  X ) )
2 xpss 5226 . . . 4  |-  ( X  X.  X )  C_  ( _V  X.  _V )
31, 2syl6ss 3615 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  (~Met `  D
)  C_  ( _V  X.  _V ) )
4 df-rel 5121 . . 3  |-  ( Rel  (~Met `  D )  <->  (~Met `  D )  C_  ( _V  X.  _V ) )
53, 4sylibr 224 . 2  |-  ( D  e.  (PsMet `  X
)  ->  Rel  (~Met `  D ) )
61ssbrd 4696 . . . . 5  |-  ( D  e.  (PsMet `  X
)  ->  ( x
(~Met `  D )
y  ->  x ( X  X.  X ) y ) )
76imp 445 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  x
(~Met `  D )
y )  ->  x
( X  X.  X
) y )
8 brxp 5147 . . . 4  |-  ( x ( X  X.  X
) y  <->  ( x  e.  X  /\  y  e.  X ) )
97, 8sylib 208 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  x
(~Met `  D )
y )  ->  (
x  e.  X  /\  y  e.  X )
)
10 psmetsym 22115 . . . . . . . 8  |-  ( ( D  e.  (PsMet `  X )  /\  x  e.  X  /\  y  e.  X )  ->  (
x D y )  =  ( y D x ) )
11103expb 1266 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( x D y )  =  ( y D x ) )
1211eqeq1d 2624 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( (
x D y )  =  0  <->  ( y D x )  =  0 ) )
13 metidv 29935 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( x
(~Met `  D )
y  <->  ( x D y )  =  0 ) )
14 metidv 29935 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  (
y  e.  X  /\  x  e.  X )
)  ->  ( y
(~Met `  D )
x  <->  ( y D x )  =  0 ) )
1514ancom2s 844 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( y
(~Met `  D )
x  <->  ( y D x )  =  0 ) )
1612, 13, 153bitr4d 300 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( x
(~Met `  D )
y  <->  y (~Met `  D ) x ) )
1716biimpd 219 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( x
(~Met `  D )
y  ->  y (~Met `  D ) x ) )
1817impancom 456 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  x
(~Met `  D )
y )  ->  (
( x  e.  X  /\  y  e.  X
)  ->  y (~Met `  D ) x ) )
199, 18mpd 15 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  x
(~Met `  D )
y )  ->  y
(~Met `  D )
x )
20 simpl 473 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  (
x (~Met `  D
) y  /\  y
(~Met `  D )
z ) )  ->  D  e.  (PsMet `  X
) )
21 simprr 796 . . . . . . . 8  |-  ( ( D  e.  (PsMet `  X )  /\  (
x (~Met `  D
) y  /\  y
(~Met `  D )
z ) )  -> 
y (~Met `  D
) z )
221ssbrd 4696 . . . . . . . . . 10  |-  ( D  e.  (PsMet `  X
)  ->  ( y
(~Met `  D )
z  ->  y ( X  X.  X ) z ) )
2322imp 445 . . . . . . . . 9  |-  ( ( D  e.  (PsMet `  X )  /\  y
(~Met `  D )
z )  ->  y
( X  X.  X
) z )
24 brxp 5147 . . . . . . . . 9  |-  ( y ( X  X.  X
) z  <->  ( y  e.  X  /\  z  e.  X ) )
2523, 24sylib 208 . . . . . . . 8  |-  ( ( D  e.  (PsMet `  X )  /\  y
(~Met `  D )
z )  ->  (
y  e.  X  /\  z  e.  X )
)
2621, 25syldan 487 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  (
x (~Met `  D
) y  /\  y
(~Met `  D )
z ) )  -> 
( y  e.  X  /\  z  e.  X
) )
2726simpld 475 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  (
x (~Met `  D
) y  /\  y
(~Met `  D )
z ) )  -> 
y  e.  X )
28 simprl 794 . . . . . . . 8  |-  ( ( D  e.  (PsMet `  X )  /\  (
x (~Met `  D
) y  /\  y
(~Met `  D )
z ) )  ->  x (~Met `  D )
y )
2928, 9syldan 487 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  (
x (~Met `  D
) y  /\  y
(~Met `  D )
z ) )  -> 
( x  e.  X  /\  y  e.  X
) )
3029simpld 475 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  (
x (~Met `  D
) y  /\  y
(~Met `  D )
z ) )  ->  x  e.  X )
3126simprd 479 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  (
x (~Met `  D
) y  /\  y
(~Met `  D )
z ) )  -> 
z  e.  X )
32 psmettri2 22114 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  (
y  e.  X  /\  x  e.  X  /\  z  e.  X )
)  ->  ( x D z )  <_ 
( ( y D x ) +e
( y D z ) ) )
3320, 27, 30, 31, 32syl13anc 1328 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  (
x (~Met `  D
) y  /\  y
(~Met `  D )
z ) )  -> 
( x D z )  <_  ( (
y D x ) +e ( y D z ) ) )
3429, 11syldan 487 . . . . . . . 8  |-  ( ( D  e.  (PsMet `  X )  /\  (
x (~Met `  D
) y  /\  y
(~Met `  D )
z ) )  -> 
( x D y )  =  ( y D x ) )
3529, 13syldan 487 . . . . . . . . 9  |-  ( ( D  e.  (PsMet `  X )  /\  (
x (~Met `  D
) y  /\  y
(~Met `  D )
z ) )  -> 
( x (~Met `  D ) y  <->  ( x D y )  =  0 ) )
3628, 35mpbid 222 . . . . . . . 8  |-  ( ( D  e.  (PsMet `  X )  /\  (
x (~Met `  D
) y  /\  y
(~Met `  D )
z ) )  -> 
( x D y )  =  0 )
3734, 36eqtr3d 2658 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  (
x (~Met `  D
) y  /\  y
(~Met `  D )
z ) )  -> 
( y D x )  =  0 )
38 metidv 29935 . . . . . . . . 9  |-  ( ( D  e.  (PsMet `  X )  /\  (
y  e.  X  /\  z  e.  X )
)  ->  ( y
(~Met `  D )
z  <->  ( y D z )  =  0 ) )
3926, 38syldan 487 . . . . . . . 8  |-  ( ( D  e.  (PsMet `  X )  /\  (
x (~Met `  D
) y  /\  y
(~Met `  D )
z ) )  -> 
( y (~Met `  D ) z  <->  ( y D z )  =  0 ) )
4021, 39mpbid 222 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  (
x (~Met `  D
) y  /\  y
(~Met `  D )
z ) )  -> 
( y D z )  =  0 )
4137, 40oveq12d 6668 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  (
x (~Met `  D
) y  /\  y
(~Met `  D )
z ) )  -> 
( ( y D x ) +e
( y D z ) )  =  ( 0 +e 0 ) )
42 0xr 10086 . . . . . . 7  |-  0  e.  RR*
43 xaddid1 12072 . . . . . . 7  |-  ( 0  e.  RR*  ->  ( 0 +e 0 )  =  0 )
4442, 43ax-mp 5 . . . . . 6  |-  ( 0 +e 0 )  =  0
4541, 44syl6eq 2672 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  (
x (~Met `  D
) y  /\  y
(~Met `  D )
z ) )  -> 
( ( y D x ) +e
( y D z ) )  =  0 )
4633, 45breqtrd 4679 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  (
x (~Met `  D
) y  /\  y
(~Met `  D )
z ) )  -> 
( x D z )  <_  0 )
47 psmetge0 22117 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  x  e.  X  /\  z  e.  X )  ->  0  <_  ( x D z ) )
4820, 30, 31, 47syl3anc 1326 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  (
x (~Met `  D
) y  /\  y
(~Met `  D )
z ) )  -> 
0  <_  ( x D z ) )
49 psmetcl 22112 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  x  e.  X  /\  z  e.  X )  ->  (
x D z )  e.  RR* )
5020, 30, 31, 49syl3anc 1326 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  (
x (~Met `  D
) y  /\  y
(~Met `  D )
z ) )  -> 
( x D z )  e.  RR* )
51 xrletri3 11985 . . . . 5  |-  ( ( ( x D z )  e.  RR*  /\  0  e.  RR* )  ->  (
( x D z )  =  0  <->  (
( x D z )  <_  0  /\  0  <_  ( x D z ) ) ) )
5250, 42, 51sylancl 694 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  (
x (~Met `  D
) y  /\  y
(~Met `  D )
z ) )  -> 
( ( x D z )  =  0  <-> 
( ( x D z )  <_  0  /\  0  <_  ( x D z ) ) ) )
5346, 48, 52mpbir2and 957 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  (
x (~Met `  D
) y  /\  y
(~Met `  D )
z ) )  -> 
( x D z )  =  0 )
54 metidv 29935 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  (
x  e.  X  /\  z  e.  X )
)  ->  ( x
(~Met `  D )
z  <->  ( x D z )  =  0 ) )
5520, 30, 31, 54syl12anc 1324 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  (
x (~Met `  D
) y  /\  y
(~Met `  D )
z ) )  -> 
( x (~Met `  D ) z  <->  ( x D z )  =  0 ) )
5653, 55mpbird 247 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  (
x (~Met `  D
) y  /\  y
(~Met `  D )
z ) )  ->  x (~Met `  D )
z )
57 psmet0 22113 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  x  e.  X )  ->  (
x D x )  =  0 )
58 metidv 29935 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  (
x  e.  X  /\  x  e.  X )
)  ->  ( x
(~Met `  D )
x  <->  ( x D x )  =  0 ) )
5958anabsan2 863 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  x  e.  X )  ->  (
x (~Met `  D
) x  <->  ( x D x )  =  0 ) )
6057, 59mpbird 247 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  x  e.  X )  ->  x
(~Met `  D )
x )
611ssbrd 4696 . . . . . 6  |-  ( D  e.  (PsMet `  X
)  ->  ( x
(~Met `  D )
x  ->  x ( X  X.  X ) x ) )
6261imp 445 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  x
(~Met `  D )
x )  ->  x
( X  X.  X
) x )
63 brxp 5147 . . . . 5  |-  ( x ( X  X.  X
) x  <->  ( x  e.  X  /\  x  e.  X ) )
6462, 63sylib 208 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  x
(~Met `  D )
x )  ->  (
x  e.  X  /\  x  e.  X )
)
6564simpld 475 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  x
(~Met `  D )
x )  ->  x  e.  X )
6660, 65impbida 877 . 2  |-  ( D  e.  (PsMet `  X
)  ->  ( x  e.  X  <->  x (~Met `  D ) x ) )
675, 19, 56, 66iserd 7768 1  |-  ( D  e.  (PsMet `  X
)  ->  (~Met `  D
)  Er  X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   class class class wbr 4653    X. cxp 5112   Rel wrel 5119   ` cfv 5888  (class class class)co 6650    Er wer 7739   0cc0 9936   RR*cxr 10073    <_ cle 10075   +ecxad 11944  PsMetcpsmet 19730  ~Metcmetid 29929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-psmet 19738  df-metid 29931
This theorem is referenced by:  pstmxmet  29940
  Copyright terms: Public domain W3C validator