MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopf1 Structured version   Visualization version   Unicode version

Theorem qtopf1 21619
Description: If a quotient map is injective, then it is a homeomorphism. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypotheses
Ref Expression
qtopf1.1  |-  ( ph  ->  J  e.  (TopOn `  X ) )
qtopf1.2  |-  ( ph  ->  F : X -1-1-> Y
)
Assertion
Ref Expression
qtopf1  |-  ( ph  ->  F  e.  ( J
Homeo ( J qTop  F ) ) )

Proof of Theorem qtopf1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 qtopf1.1 . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 qtopf1.2 . . . 4  |-  ( ph  ->  F : X -1-1-> Y
)
3 f1fn 6102 . . . 4  |-  ( F : X -1-1-> Y  ->  F  Fn  X )
42, 3syl 17 . . 3  |-  ( ph  ->  F  Fn  X )
5 qtopid 21508 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  F  Fn  X )  ->  F  e.  ( J  Cn  ( J qTop  F ) ) )
61, 4, 5syl2anc 693 . 2  |-  ( ph  ->  F  e.  ( J  Cn  ( J qTop  F
) ) )
7 f1f1orn 6148 . . . 4  |-  ( F : X -1-1-> Y  ->  F : X -1-1-onto-> ran  F )
8 f1ocnv 6149 . . . 4  |-  ( F : X -1-1-onto-> ran  F  ->  `' F : ran  F -1-1-onto-> X )
9 f1of 6137 . . . 4  |-  ( `' F : ran  F -1-1-onto-> X  ->  `' F : ran  F --> X )
102, 7, 8, 94syl 19 . . 3  |-  ( ph  ->  `' F : ran  F --> X )
11 imacnvcnv 5599 . . . . 5  |-  ( `' `' F " x )  =  ( F "
x )
12 imassrn 5477 . . . . . . 7  |-  ( F
" x )  C_  ran  F
1312a1i 11 . . . . . 6  |-  ( (
ph  /\  x  e.  J )  ->  ( F " x )  C_  ran  F )
142adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  J )  ->  F : X -1-1-> Y )
15 toponss 20731 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  x  e.  J )  ->  x  C_  X )
161, 15sylan 488 . . . . . . . 8  |-  ( (
ph  /\  x  e.  J )  ->  x  C_  X )
17 f1imacnv 6153 . . . . . . . 8  |-  ( ( F : X -1-1-> Y  /\  x  C_  X )  ->  ( `' F " ( F " x
) )  =  x )
1814, 16, 17syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  x  e.  J )  ->  ( `' F " ( F
" x ) )  =  x )
19 simpr 477 . . . . . . 7  |-  ( (
ph  /\  x  e.  J )  ->  x  e.  J )
2018, 19eqeltrd 2701 . . . . . 6  |-  ( (
ph  /\  x  e.  J )  ->  ( `' F " ( F
" x ) )  e.  J )
21 dffn4 6121 . . . . . . . . 9  |-  ( F  Fn  X  <->  F : X -onto-> ran  F )
224, 21sylib 208 . . . . . . . 8  |-  ( ph  ->  F : X -onto-> ran  F )
23 elqtop3 21506 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> ran  F )  -> 
( ( F "
x )  e.  ( J qTop  F )  <->  ( ( F " x )  C_  ran  F  /\  ( `' F " ( F
" x ) )  e.  J ) ) )
241, 22, 23syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( ( F "
x )  e.  ( J qTop  F )  <->  ( ( F " x )  C_  ran  F  /\  ( `' F " ( F
" x ) )  e.  J ) ) )
2524adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  J )  ->  (
( F " x
)  e.  ( J qTop 
F )  <->  ( ( F " x )  C_  ran  F  /\  ( `' F " ( F
" x ) )  e.  J ) ) )
2613, 20, 25mpbir2and 957 . . . . 5  |-  ( (
ph  /\  x  e.  J )  ->  ( F " x )  e.  ( J qTop  F ) )
2711, 26syl5eqel 2705 . . . 4  |-  ( (
ph  /\  x  e.  J )  ->  ( `' `' F " x )  e.  ( J qTop  F
) )
2827ralrimiva 2966 . . 3  |-  ( ph  ->  A. x  e.  J  ( `' `' F " x )  e.  ( J qTop  F
) )
29 qtoptopon 21507 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> ran  F )  -> 
( J qTop  F )  e.  (TopOn `  ran  F ) )
301, 22, 29syl2anc 693 . . . 4  |-  ( ph  ->  ( J qTop  F )  e.  (TopOn `  ran  F ) )
31 iscn 21039 . . . 4  |-  ( ( ( J qTop  F )  e.  (TopOn `  ran  F )  /\  J  e.  (TopOn `  X )
)  ->  ( `' F  e.  ( ( J qTop  F )  Cn  J
)  <->  ( `' F : ran  F --> X  /\  A. x  e.  J  ( `' `' F " x )  e.  ( J qTop  F
) ) ) )
3230, 1, 31syl2anc 693 . . 3  |-  ( ph  ->  ( `' F  e.  ( ( J qTop  F
)  Cn  J )  <-> 
( `' F : ran  F --> X  /\  A. x  e.  J  ( `' `' F " x )  e.  ( J qTop  F
) ) ) )
3310, 28, 32mpbir2and 957 . 2  |-  ( ph  ->  `' F  e.  (
( J qTop  F )  Cn  J ) )
34 ishmeo 21562 . 2  |-  ( F  e.  ( J Homeo ( J qTop  F ) )  <-> 
( F  e.  ( J  Cn  ( J qTop 
F ) )  /\  `' F  e.  (
( J qTop  F )  Cn  J ) ) )
356, 33, 34sylanbrc 698 1  |-  ( ph  ->  F  e.  ( J
Homeo ( J qTop  F ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   `'ccnv 5113   ran crn 5115   "cima 5117    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   qTop cqtop 16163  TopOnctopon 20715    Cn ccn 21028   Homeochmeo 21556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-qtop 16167  df-top 20699  df-topon 20716  df-cn 21031  df-hmeo 21558
This theorem is referenced by:  t0kq  21621
  Copyright terms: Public domain W3C validator