Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qtopt1 Structured version   Visualization version   Unicode version

Theorem qtopt1 29902
Description: If every equivalence class is closed, then the quotient space is T1 . (Contributed by Thierry Arnoux, 5-Jan-2020.)
Hypotheses
Ref Expression
qtopt1.x  |-  X  = 
U. J
qtopt1.1  |-  ( ph  ->  J  e.  Fre )
qtopt1.2  |-  ( ph  ->  F : X -onto-> Y
)
qtopt1.3  |-  ( (
ph  /\  x  e.  Y )  ->  ( `' F " { x } )  e.  (
Clsd `  J )
)
Assertion
Ref Expression
qtopt1  |-  ( ph  ->  ( J qTop  F )  e.  Fre )
Distinct variable groups:    x, F    x, J    ph, x
Allowed substitution hints:    X( x)    Y( x)

Proof of Theorem qtopt1
StepHypRef Expression
1 qtopt1.1 . . . 4  |-  ( ph  ->  J  e.  Fre )
2 t1top 21134 . . . 4  |-  ( J  e.  Fre  ->  J  e.  Top )
31, 2syl 17 . . 3  |-  ( ph  ->  J  e.  Top )
4 qtopt1.2 . . . 4  |-  ( ph  ->  F : X -onto-> Y
)
5 fofn 6117 . . . 4  |-  ( F : X -onto-> Y  ->  F  Fn  X )
64, 5syl 17 . . 3  |-  ( ph  ->  F  Fn  X )
7 qtopt1.x . . . 4  |-  X  = 
U. J
87qtoptop 21503 . . 3  |-  ( ( J  e.  Top  /\  F  Fn  X )  ->  ( J qTop  F )  e.  Top )
93, 6, 8syl2anc 693 . 2  |-  ( ph  ->  ( J qTop  F )  e.  Top )
10 simpr 477 . . . . . 6  |-  ( (
ph  /\  x  e.  U. ( J qTop  F ) )  ->  x  e.  U. ( J qTop  F ) )
117qtopuni 21505 . . . . . . . 8  |-  ( ( J  e.  Top  /\  F : X -onto-> Y )  ->  Y  =  U. ( J qTop  F )
)
123, 4, 11syl2anc 693 . . . . . . 7  |-  ( ph  ->  Y  =  U. ( J qTop  F ) )
1312adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  U. ( J qTop  F ) )  ->  Y  =  U. ( J qTop  F ) )
1410, 13eleqtrrd 2704 . . . . 5  |-  ( (
ph  /\  x  e.  U. ( J qTop  F ) )  ->  x  e.  Y )
1514snssd 4340 . . . 4  |-  ( (
ph  /\  x  e.  U. ( J qTop  F ) )  ->  { x }  C_  Y )
16 qtopt1.3 . . . . 5  |-  ( (
ph  /\  x  e.  Y )  ->  ( `' F " { x } )  e.  (
Clsd `  J )
)
1714, 16syldan 487 . . . 4  |-  ( (
ph  /\  x  e.  U. ( J qTop  F ) )  ->  ( `' F " { x }
)  e.  ( Clsd `  J ) )
183, 7jctir 561 . . . . . . 7  |-  ( ph  ->  ( J  e.  Top  /\  X  =  U. J
) )
19 istopon 20717 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  <->  ( J  e. 
Top  /\  X  =  U. J ) )
2018, 19sylibr 224 . . . . . 6  |-  ( ph  ->  J  e.  (TopOn `  X ) )
21 qtopcld 21516 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  ->  ( { x }  e.  ( Clsd `  ( J qTop  F ) )  <->  ( {
x }  C_  Y  /\  ( `' F " { x } )  e.  ( Clsd `  J
) ) ) )
2220, 4, 21syl2anc 693 . . . . 5  |-  ( ph  ->  ( { x }  e.  ( Clsd `  ( J qTop  F ) )  <->  ( {
x }  C_  Y  /\  ( `' F " { x } )  e.  ( Clsd `  J
) ) ) )
2322adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  U. ( J qTop  F ) )  ->  ( {
x }  e.  (
Clsd `  ( J qTop  F ) )  <->  ( {
x }  C_  Y  /\  ( `' F " { x } )  e.  ( Clsd `  J
) ) ) )
2415, 17, 23mpbir2and 957 . . 3  |-  ( (
ph  /\  x  e.  U. ( J qTop  F ) )  ->  { x }  e.  ( Clsd `  ( J qTop  F ) ) )
2524ralrimiva 2966 . 2  |-  ( ph  ->  A. x  e.  U. ( J qTop  F ) { x }  e.  ( Clsd `  ( J qTop  F ) ) )
26 eqid 2622 . . 3  |-  U. ( J qTop  F )  =  U. ( J qTop  F )
2726ist1 21125 . 2  |-  ( ( J qTop  F )  e. 
Fre 
<->  ( ( J qTop  F
)  e.  Top  /\  A. x  e.  U. ( J qTop  F ) { x }  e.  ( Clsd `  ( J qTop  F ) ) ) )
289, 25, 27sylanbrc 698 1  |-  ( ph  ->  ( J qTop  F )  e.  Fre )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   {csn 4177   U.cuni 4436   `'ccnv 5113   "cima 5117    Fn wfn 5883   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   qTop cqtop 16163   Topctop 20698  TopOnctopon 20715   Clsdccld 20820   Frect1 21111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-qtop 16167  df-top 20699  df-topon 20716  df-cld 20823  df-t1 21118
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator