Proof of Theorem qtopcld
Step | Hyp | Ref
| Expression |
1 | | qtoptopon 21507 |
. . 3
  TopOn        qTop  TopOn    |
2 | | topontop 20718 |
. . 3
  qTop  TopOn   qTop    |
3 | | eqid 2622 |
. . . 4
  qTop   
qTop   |
4 | 3 | iscld 20831 |
. . 3
  qTop       qTop  
   qTop 
  
qTop    qTop      |
5 | 1, 2, 4 | 3syl 18 |
. 2
  TopOn       
    qTop      qTop     qTop    qTop      |
6 | | toponuni 20719 |
. . . . 5
  qTop  TopOn    qTop    |
7 | 1, 6 | syl 17 |
. . . 4
  TopOn         qTop    |
8 | 7 | sseq2d 3633 |
. . 3
  TopOn       
  qTop     |
9 | 7 | difeq1d 3727 |
. . . 4
  TopOn            qTop     |
10 | 9 | eleq1d 2686 |
. . 3
  TopOn           qTop 
  
qTop    qTop     |
11 | 8, 10 | anbi12d 747 |
. 2
  TopOn            qTop  
   qTop 
  
qTop    qTop      |
12 | | elqtop3 21506 |
. . . . 5
  TopOn           qTop 
              |
13 | 12 | adantr 481 |
. . . 4
   TopOn            qTop 
              |
14 | | difss 3737 |
. . . . . 6
   |
15 | 14 | biantrur 527 |
. . . . 5
       
             |
16 | | fofun 6116 |
. . . . . . . . . 10
       |
17 | 16 | ad2antlr 763 |
. . . . . . . . 9
   TopOn          |
18 | | funcnvcnv 5956 |
. . . . . . . . 9

    |
19 | | imadif 5973 |
. . . . . . . . 9
  
                     |
20 | 17, 18, 19 | 3syl 18 |
. . . . . . . 8
   TopOn                             |
21 | | fof 6115 |
. . . . . . . . . . . 12
           |
22 | | fimacnv 6347 |
. . . . . . . . . . . 12
            |
23 | 21, 22 | syl 17 |
. . . . . . . . . . 11
            |
24 | 23 | ad2antlr 763 |
. . . . . . . . . 10
   TopOn               |
25 | | toponuni 20719 |
. . . . . . . . . . 11
 TopOn 
   |
26 | 25 | ad2antrr 762 |
. . . . . . . . . 10
   TopOn           |
27 | 24, 26 | eqtrd 2656 |
. . . . . . . . 9
   TopOn                |
28 | 27 | difeq1d 3727 |
. . . . . . . 8
   TopOn                              |
29 | 20, 28 | eqtrd 2656 |
. . . . . . 7
   TopOn                         |
30 | 29 | eleq1d 2686 |
. . . . . 6
   TopOn                           |
31 | | topontop 20718 |
. . . . . . . 8
 TopOn 
  |
32 | 31 | ad2antrr 762 |
. . . . . . 7
   TopOn          |
33 | | cnvimass 5485 |
. . . . . . . . 9
    
 |
34 | | fofn 6117 |
. . . . . . . . . . 11
    
  |
35 | | fndm 5990 |
. . . . . . . . . . 11
   |
36 | 34, 35 | syl 17 |
. . . . . . . . . 10
       |
37 | 36 | ad2antlr 763 |
. . . . . . . . 9
   TopOn          |
38 | 33, 37 | syl5sseq 3653 |
. . . . . . . 8
   TopOn               |
39 | 38, 26 | sseqtrd 3641 |
. . . . . . 7
   TopOn                |
40 | | eqid 2622 |
. . . . . . . 8
   |
41 | 40 | iscld2 20832 |
. . . . . . 7
                              |
42 | 32, 39, 41 | syl2anc 693 |
. . . . . 6
   TopOn                             |
43 | 30, 42 | bitr4d 271 |
. . . . 5
   TopOn                            |
44 | 15, 43 | syl5bbr 274 |
. . . 4
   TopOn                                |
45 | 13, 44 | bitrd 268 |
. . 3
   TopOn            qTop 
            |
46 | 45 | pm5.32da 673 |
. 2
  TopOn            qTop  
              |
47 | 5, 11, 46 | 3bitr2d 296 |
1
  TopOn       
    qTop                 |