MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopcld Structured version   Visualization version   Unicode version

Theorem qtopcld 21516
Description: The property of being a closed set in the quotient topology. (Contributed by Mario Carneiro, 24-Mar-2015.)
Assertion
Ref Expression
qtopcld  |-  ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  ->  ( A  e.  ( Clsd `  ( J qTop  F ) )  <->  ( A  C_  Y  /\  ( `' F " A )  e.  (
Clsd `  J )
) ) )

Proof of Theorem qtopcld
StepHypRef Expression
1 qtoptopon 21507 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  ->  ( J qTop  F )  e.  (TopOn `  Y ) )
2 topontop 20718 . . 3  |-  ( ( J qTop  F )  e.  (TopOn `  Y )  ->  ( J qTop  F )  e.  Top )
3 eqid 2622 . . . 4  |-  U. ( J qTop  F )  =  U. ( J qTop  F )
43iscld 20831 . . 3  |-  ( ( J qTop  F )  e. 
Top  ->  ( A  e.  ( Clsd `  ( J qTop  F ) )  <->  ( A  C_ 
U. ( J qTop  F
)  /\  ( U. ( J qTop  F )  \  A )  e.  ( J qTop  F ) ) ) )
51, 2, 43syl 18 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  ->  ( A  e.  ( Clsd `  ( J qTop  F ) )  <->  ( A  C_  U. ( J qTop  F )  /\  ( U. ( J qTop  F )  \  A
)  e.  ( J qTop 
F ) ) ) )
6 toponuni 20719 . . . . 5  |-  ( ( J qTop  F )  e.  (TopOn `  Y )  ->  Y  =  U. ( J qTop  F ) )
71, 6syl 17 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  ->  Y  =  U. ( J qTop  F
) )
87sseq2d 3633 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  ->  ( A  C_  Y  <->  A  C_  U. ( J qTop  F ) ) )
97difeq1d 3727 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  ->  ( Y  \  A )  =  ( U. ( J qTop 
F )  \  A
) )
109eleq1d 2686 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  ->  (
( Y  \  A
)  e.  ( J qTop 
F )  <->  ( U. ( J qTop  F )  \  A )  e.  ( J qTop  F ) ) )
118, 10anbi12d 747 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  ->  (
( A  C_  Y  /\  ( Y  \  A
)  e.  ( J qTop 
F ) )  <->  ( A  C_ 
U. ( J qTop  F
)  /\  ( U. ( J qTop  F )  \  A )  e.  ( J qTop  F ) ) ) )
12 elqtop3 21506 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  ->  (
( Y  \  A
)  e.  ( J qTop 
F )  <->  ( ( Y  \  A )  C_  Y  /\  ( `' F " ( Y  \  A
) )  e.  J
) ) )
1312adantr 481 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  /\  A  C_  Y )  ->  (
( Y  \  A
)  e.  ( J qTop 
F )  <->  ( ( Y  \  A )  C_  Y  /\  ( `' F " ( Y  \  A
) )  e.  J
) ) )
14 difss 3737 . . . . . 6  |-  ( Y 
\  A )  C_  Y
1514biantrur 527 . . . . 5  |-  ( ( `' F " ( Y 
\  A ) )  e.  J  <->  ( ( Y  \  A )  C_  Y  /\  ( `' F " ( Y  \  A
) )  e.  J
) )
16 fofun 6116 . . . . . . . . . 10  |-  ( F : X -onto-> Y  ->  Fun  F )
1716ad2antlr 763 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  /\  A  C_  Y )  ->  Fun  F )
18 funcnvcnv 5956 . . . . . . . . 9  |-  ( Fun 
F  ->  Fun  `' `' F )
19 imadif 5973 . . . . . . . . 9  |-  ( Fun  `' `' F  ->  ( `' F " ( Y 
\  A ) )  =  ( ( `' F " Y ) 
\  ( `' F " A ) ) )
2017, 18, 193syl 18 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  /\  A  C_  Y )  ->  ( `' F " ( Y 
\  A ) )  =  ( ( `' F " Y ) 
\  ( `' F " A ) ) )
21 fof 6115 . . . . . . . . . . . 12  |-  ( F : X -onto-> Y  ->  F : X --> Y )
22 fimacnv 6347 . . . . . . . . . . . 12  |-  ( F : X --> Y  -> 
( `' F " Y )  =  X )
2321, 22syl 17 . . . . . . . . . . 11  |-  ( F : X -onto-> Y  -> 
( `' F " Y )  =  X )
2423ad2antlr 763 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  /\  A  C_  Y )  ->  ( `' F " Y )  =  X )
25 toponuni 20719 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
2625ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  /\  A  C_  Y )  ->  X  =  U. J )
2724, 26eqtrd 2656 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  /\  A  C_  Y )  ->  ( `' F " Y )  =  U. J )
2827difeq1d 3727 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  /\  A  C_  Y )  ->  (
( `' F " Y )  \  ( `' F " A ) )  =  ( U. J  \  ( `' F " A ) ) )
2920, 28eqtrd 2656 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  /\  A  C_  Y )  ->  ( `' F " ( Y 
\  A ) )  =  ( U. J  \  ( `' F " A ) ) )
3029eleq1d 2686 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  /\  A  C_  Y )  ->  (
( `' F "
( Y  \  A
) )  e.  J  <->  ( U. J  \  ( `' F " A ) )  e.  J ) )
31 topontop 20718 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
3231ad2antrr 762 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  /\  A  C_  Y )  ->  J  e.  Top )
33 cnvimass 5485 . . . . . . . . 9  |-  ( `' F " A ) 
C_  dom  F
34 fofn 6117 . . . . . . . . . . 11  |-  ( F : X -onto-> Y  ->  F  Fn  X )
35 fndm 5990 . . . . . . . . . . 11  |-  ( F  Fn  X  ->  dom  F  =  X )
3634, 35syl 17 . . . . . . . . . 10  |-  ( F : X -onto-> Y  ->  dom  F  =  X )
3736ad2antlr 763 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  /\  A  C_  Y )  ->  dom  F  =  X )
3833, 37syl5sseq 3653 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  /\  A  C_  Y )  ->  ( `' F " A ) 
C_  X )
3938, 26sseqtrd 3641 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  /\  A  C_  Y )  ->  ( `' F " A ) 
C_  U. J )
40 eqid 2622 . . . . . . . 8  |-  U. J  =  U. J
4140iscld2 20832 . . . . . . 7  |-  ( ( J  e.  Top  /\  ( `' F " A ) 
C_  U. J )  -> 
( ( `' F " A )  e.  (
Clsd `  J )  <->  ( U. J  \  ( `' F " A ) )  e.  J ) )
4232, 39, 41syl2anc 693 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  /\  A  C_  Y )  ->  (
( `' F " A )  e.  (
Clsd `  J )  <->  ( U. J  \  ( `' F " A ) )  e.  J ) )
4330, 42bitr4d 271 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  /\  A  C_  Y )  ->  (
( `' F "
( Y  \  A
) )  e.  J  <->  ( `' F " A )  e.  ( Clsd `  J
) ) )
4415, 43syl5bbr 274 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  /\  A  C_  Y )  ->  (
( ( Y  \  A )  C_  Y  /\  ( `' F "
( Y  \  A
) )  e.  J
)  <->  ( `' F " A )  e.  (
Clsd `  J )
) )
4513, 44bitrd 268 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  /\  A  C_  Y )  ->  (
( Y  \  A
)  e.  ( J qTop 
F )  <->  ( `' F " A )  e.  ( Clsd `  J
) ) )
4645pm5.32da 673 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  ->  (
( A  C_  Y  /\  ( Y  \  A
)  e.  ( J qTop 
F ) )  <->  ( A  C_  Y  /\  ( `' F " A )  e.  ( Clsd `  J
) ) ) )
475, 11, 463bitr2d 296 1  |-  ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  ->  ( A  e.  ( Clsd `  ( J qTop  F ) )  <->  ( A  C_  Y  /\  ( `' F " A )  e.  (
Clsd `  J )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    \ cdif 3571    C_ wss 3574   U.cuni 4436   `'ccnv 5113   dom cdm 5114   "cima 5117   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   qTop cqtop 16163   Topctop 20698  TopOnctopon 20715   Clsdccld 20820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-qtop 16167  df-top 20699  df-topon 20716  df-cld 20823
This theorem is referenced by:  qtoprest  21520  kqcld  21538  qustgphaus  21926  qtopt1  29902
  Copyright terms: Public domain W3C validator