| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > scott0 | Structured version Visualization version Unicode version | ||
| Description: Scott's trick collects
all sets that have a certain property and are of
the smallest possible rank. This theorem shows that the resulting
collection, expressed as in Equation 9.3 of [Jech] p. 72, contains at
least one representative with the property, if there is one. In other
words, the collection is empty iff no set has the property (i.e. |
| Ref | Expression |
|---|---|
| scott0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq 3192 |
. . 3
| |
| 2 | rab0 3955 |
. . 3
| |
| 3 | 1, 2 | syl6eq 2672 |
. 2
|
| 4 | n0 3931 |
. . . . . . . 8
| |
| 5 | nfre1 3005 |
. . . . . . . . 9
| |
| 6 | eqid 2622 |
. . . . . . . . . 10
| |
| 7 | rspe 3003 |
. . . . . . . . . 10
| |
| 8 | 6, 7 | mpan2 707 |
. . . . . . . . 9
|
| 9 | 5, 8 | exlimi 2086 |
. . . . . . . 8
|
| 10 | 4, 9 | sylbi 207 |
. . . . . . 7
|
| 11 | fvex 6201 |
. . . . . . . . . . 11
| |
| 12 | eqeq1 2626 |
. . . . . . . . . . . 12
| |
| 13 | 12 | anbi2d 740 |
. . . . . . . . . . 11
|
| 14 | 11, 13 | spcev 3300 |
. . . . . . . . . 10
|
| 15 | 14 | eximi 1762 |
. . . . . . . . 9
|
| 16 | excom 2042 |
. . . . . . . . 9
| |
| 17 | 15, 16 | sylibr 224 |
. . . . . . . 8
|
| 18 | df-rex 2918 |
. . . . . . . 8
| |
| 19 | df-rex 2918 |
. . . . . . . . 9
| |
| 20 | 19 | exbii 1774 |
. . . . . . . 8
|
| 21 | 17, 18, 20 | 3imtr4i 281 |
. . . . . . 7
|
| 22 | 10, 21 | syl 17 |
. . . . . 6
|
| 23 | abn0 3954 |
. . . . . 6
| |
| 24 | 22, 23 | sylibr 224 |
. . . . 5
|
| 25 | 11 | dfiin2 4555 |
. . . . . 6
|
| 26 | rankon 8658 |
. . . . . . . . . 10
| |
| 27 | eleq1 2689 |
. . . . . . . . . 10
| |
| 28 | 26, 27 | mpbiri 248 |
. . . . . . . . 9
|
| 29 | 28 | rexlimivw 3029 |
. . . . . . . 8
|
| 30 | 29 | abssi 3677 |
. . . . . . 7
|
| 31 | onint 6995 |
. . . . . . 7
| |
| 32 | 30, 31 | mpan 706 |
. . . . . 6
|
| 33 | 25, 32 | syl5eqel 2705 |
. . . . 5
|
| 34 | nfii1 4551 |
. . . . . . . . 9
| |
| 35 | 34 | nfeq2 2780 |
. . . . . . . 8
|
| 36 | eqeq1 2626 |
. . . . . . . 8
| |
| 37 | 35, 36 | rexbid 3051 |
. . . . . . 7
|
| 38 | 37 | elabg 3351 |
. . . . . 6
|
| 39 | 38 | ibi 256 |
. . . . 5
|
| 40 | ssid 3624 |
. . . . . . . . . 10
| |
| 41 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 42 | 41 | sseq1d 3632 |
. . . . . . . . . . 11
|
| 43 | 42 | rspcev 3309 |
. . . . . . . . . 10
|
| 44 | 40, 43 | mpan2 707 |
. . . . . . . . 9
|
| 45 | iinss 4571 |
. . . . . . . . 9
| |
| 46 | 44, 45 | syl 17 |
. . . . . . . 8
|
| 47 | sseq1 3626 |
. . . . . . . 8
| |
| 48 | 46, 47 | syl5ib 234 |
. . . . . . 7
|
| 49 | 48 | ralrimiv 2965 |
. . . . . 6
|
| 50 | 49 | reximi 3011 |
. . . . 5
|
| 51 | 24, 33, 39, 50 | 4syl 19 |
. . . 4
|
| 52 | rabn0 3958 |
. . . 4
| |
| 53 | 51, 52 | sylibr 224 |
. . 3
|
| 54 | 53 | necon4i 2829 |
. 2
|
| 55 | 3, 54 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-r1 8627 df-rank 8628 |
| This theorem is referenced by: scott0s 8751 cplem1 8752 karden 8758 scott0f 33977 |
| Copyright terms: Public domain | W3C validator |