| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > txcnmpt | Structured version Visualization version Unicode version | ||
| Description: A map into the product of two topological spaces is continuous if both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| txcnmpt.1 |
|
| txcnmpt.2 |
|
| Ref | Expression |
|---|---|
| txcnmpt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txcnmpt.1 |
. . . . . . 7
| |
| 2 | eqid 2622 |
. . . . . . 7
| |
| 3 | 1, 2 | cnf 21050 |
. . . . . 6
|
| 4 | 3 | adantr 481 |
. . . . 5
|
| 5 | 4 | ffvelrnda 6359 |
. . . 4
|
| 6 | eqid 2622 |
. . . . . . 7
| |
| 7 | 1, 6 | cnf 21050 |
. . . . . 6
|
| 8 | 7 | adantl 482 |
. . . . 5
|
| 9 | 8 | ffvelrnda 6359 |
. . . 4
|
| 10 | opelxpi 5148 |
. . . 4
| |
| 11 | 5, 9, 10 | syl2anc 693 |
. . 3
|
| 12 | txcnmpt.2 |
. . 3
| |
| 13 | 11, 12 | fmptd 6385 |
. 2
|
| 14 | 12 | mptpreima 5628 |
. . . . . 6
|
| 15 | 4 | adantr 481 |
. . . . . . . . . . . . 13
|
| 16 | 15 | adantr 481 |
. . . . . . . . . . . 12
|
| 17 | ffn 6045 |
. . . . . . . . . . . 12
| |
| 18 | elpreima 6337 |
. . . . . . . . . . . 12
| |
| 19 | 16, 17, 18 | 3syl 18 |
. . . . . . . . . . 11
|
| 20 | ibar 525 |
. . . . . . . . . . . 12
| |
| 21 | 20 | adantl 482 |
. . . . . . . . . . 11
|
| 22 | 19, 21 | bitr4d 271 |
. . . . . . . . . 10
|
| 23 | 8 | ad2antrr 762 |
. . . . . . . . . . . 12
|
| 24 | ffn 6045 |
. . . . . . . . . . . 12
| |
| 25 | elpreima 6337 |
. . . . . . . . . . . 12
| |
| 26 | 23, 24, 25 | 3syl 18 |
. . . . . . . . . . 11
|
| 27 | ibar 525 |
. . . . . . . . . . . 12
| |
| 28 | 27 | adantl 482 |
. . . . . . . . . . 11
|
| 29 | 26, 28 | bitr4d 271 |
. . . . . . . . . 10
|
| 30 | 22, 29 | anbi12d 747 |
. . . . . . . . 9
|
| 31 | elin 3796 |
. . . . . . . . 9
| |
| 32 | opelxp 5146 |
. . . . . . . . 9
| |
| 33 | 30, 31, 32 | 3bitr4g 303 |
. . . . . . . 8
|
| 34 | 33 | rabbi2dva 3821 |
. . . . . . 7
|
| 35 | inss1 3833 |
. . . . . . . . . 10
| |
| 36 | cnvimass 5485 |
. . . . . . . . . 10
| |
| 37 | 35, 36 | sstri 3612 |
. . . . . . . . 9
|
| 38 | fdm 6051 |
. . . . . . . . . 10
| |
| 39 | 15, 38 | syl 17 |
. . . . . . . . 9
|
| 40 | 37, 39 | syl5sseq 3653 |
. . . . . . . 8
|
| 41 | sseqin2 3817 |
. . . . . . . 8
| |
| 42 | 40, 41 | sylib 208 |
. . . . . . 7
|
| 43 | 34, 42 | eqtr3d 2658 |
. . . . . 6
|
| 44 | 14, 43 | syl5eq 2668 |
. . . . 5
|
| 45 | cntop1 21044 |
. . . . . . . 8
| |
| 46 | 45 | adantl 482 |
. . . . . . 7
|
| 47 | 46 | adantr 481 |
. . . . . 6
|
| 48 | cnima 21069 |
. . . . . . 7
| |
| 49 | 48 | ad2ant2r 783 |
. . . . . 6
|
| 50 | cnima 21069 |
. . . . . . 7
| |
| 51 | 50 | ad2ant2l 782 |
. . . . . 6
|
| 52 | inopn 20704 |
. . . . . 6
| |
| 53 | 47, 49, 51, 52 | syl3anc 1326 |
. . . . 5
|
| 54 | 44, 53 | eqeltrd 2701 |
. . . 4
|
| 55 | 54 | ralrimivva 2971 |
. . 3
|
| 56 | vex 3203 |
. . . . . 6
| |
| 57 | vex 3203 |
. . . . . 6
| |
| 58 | 56, 57 | xpex 6962 |
. . . . 5
|
| 59 | 58 | rgen2w 2925 |
. . . 4
|
| 60 | eqid 2622 |
. . . . 5
| |
| 61 | imaeq2 5462 |
. . . . . 6
| |
| 62 | 61 | eleq1d 2686 |
. . . . 5
|
| 63 | 60, 62 | ralrnmpt2 6775 |
. . . 4
|
| 64 | 59, 63 | ax-mp 5 |
. . 3
|
| 65 | 55, 64 | sylibr 224 |
. 2
|
| 66 | 1 | toptopon 20722 |
. . . 4
|
| 67 | 46, 66 | sylib 208 |
. . 3
|
| 68 | cntop2 21045 |
. . . 4
| |
| 69 | cntop2 21045 |
. . . 4
| |
| 70 | eqid 2622 |
. . . . 5
| |
| 71 | 70 | txval 21367 |
. . . 4
|
| 72 | 68, 69, 71 | syl2an 494 |
. . 3
|
| 73 | 2 | toptopon 20722 |
. . . . 5
|
| 74 | 68, 73 | sylib 208 |
. . . 4
|
| 75 | 6 | toptopon 20722 |
. . . . 5
|
| 76 | 69, 75 | sylib 208 |
. . . 4
|
| 77 | txtopon 21394 |
. . . 4
| |
| 78 | 74, 76, 77 | syl2an 494 |
. . 3
|
| 79 | 67, 72, 78 | tgcn 21056 |
. 2
|
| 80 | 13, 65, 79 | mpbir2and 957 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 df-topgen 16104 df-top 20699 df-topon 20716 df-bases 20750 df-cn 21031 df-tx 21365 |
| This theorem is referenced by: uptx 21428 hauseqlcld 21449 txkgen 21455 cnmpt1t 21468 cnmpt2t 21476 txpconn 31214 |
| Copyright terms: Public domain | W3C validator |