MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rcaninv Structured version   Visualization version   Unicode version

Theorem rcaninv 16454
Description: Right cancellation of an inverse of an isomorphism. (Contributed by AV, 5-Apr-2017.)
Hypotheses
Ref Expression
rcaninv.b  |-  B  =  ( Base `  C
)
rcaninv.n  |-  N  =  (Inv `  C )
rcaninv.c  |-  ( ph  ->  C  e.  Cat )
rcaninv.x  |-  ( ph  ->  X  e.  B )
rcaninv.y  |-  ( ph  ->  Y  e.  B )
rcaninv.z  |-  ( ph  ->  Z  e.  B )
rcaninv.f  |-  ( ph  ->  F  e.  ( Y (  Iso  `  C
) X ) )
rcaninv.g  |-  ( ph  ->  G  e.  ( Y ( Hom  `  C
) Z ) )
rcaninv.h  |-  ( ph  ->  H  e.  ( Y ( Hom  `  C
) Z ) )
rcaninv.1  |-  R  =  ( ( Y N X ) `  F
)
rcaninv.o  |-  .o.  =  ( <. X ,  Y >. (comp `  C ) Z )
Assertion
Ref Expression
rcaninv  |-  ( ph  ->  ( ( G  .o.  R )  =  ( H  .o.  R )  ->  G  =  H ) )

Proof of Theorem rcaninv
StepHypRef Expression
1 rcaninv.b . . . . . 6  |-  B  =  ( Base `  C
)
2 eqid 2622 . . . . . 6  |-  ( Hom  `  C )  =  ( Hom  `  C )
3 eqid 2622 . . . . . 6  |-  (comp `  C )  =  (comp `  C )
4 rcaninv.c . . . . . 6  |-  ( ph  ->  C  e.  Cat )
5 rcaninv.y . . . . . 6  |-  ( ph  ->  Y  e.  B )
6 rcaninv.x . . . . . 6  |-  ( ph  ->  X  e.  B )
7 eqid 2622 . . . . . . . 8  |-  (  Iso  `  C )  =  (  Iso  `  C )
81, 2, 7, 4, 5, 6isohom 16436 . . . . . . 7  |-  ( ph  ->  ( Y (  Iso  `  C ) X ) 
C_  ( Y ( Hom  `  C ) X ) )
9 rcaninv.f . . . . . . 7  |-  ( ph  ->  F  e.  ( Y (  Iso  `  C
) X ) )
108, 9sseldd 3604 . . . . . 6  |-  ( ph  ->  F  e.  ( Y ( Hom  `  C
) X ) )
111, 2, 7, 4, 6, 5isohom 16436 . . . . . . 7  |-  ( ph  ->  ( X (  Iso  `  C ) Y ) 
C_  ( X ( Hom  `  C ) Y ) )
12 rcaninv.n . . . . . . . . 9  |-  N  =  (Inv `  C )
131, 12, 4, 5, 6, 7invf 16428 . . . . . . . 8  |-  ( ph  ->  ( Y N X ) : ( Y (  Iso  `  C
) X ) --> ( X (  Iso  `  C
) Y ) )
1413, 9ffvelrnd 6360 . . . . . . 7  |-  ( ph  ->  ( ( Y N X ) `  F
)  e.  ( X (  Iso  `  C
) Y ) )
1511, 14sseldd 3604 . . . . . 6  |-  ( ph  ->  ( ( Y N X ) `  F
)  e.  ( X ( Hom  `  C
) Y ) )
16 rcaninv.z . . . . . 6  |-  ( ph  ->  Z  e.  B )
17 rcaninv.g . . . . . 6  |-  ( ph  ->  G  e.  ( Y ( Hom  `  C
) Z ) )
181, 2, 3, 4, 5, 6, 5, 10, 15, 16, 17catass 16347 . . . . 5  |-  ( ph  ->  ( ( G (
<. X ,  Y >. (comp `  C ) Z ) ( ( Y N X ) `  F
) ) ( <. Y ,  X >. (comp `  C ) Z ) F )  =  ( G ( <. Y ,  Y >. (comp `  C
) Z ) ( ( ( Y N X ) `  F
) ( <. Y ,  X >. (comp `  C
) Y ) F ) ) )
19 eqid 2622 . . . . . . . 8  |-  ( Id
`  C )  =  ( Id `  C
)
20 eqid 2622 . . . . . . . 8  |-  ( <. Y ,  X >. (comp `  C ) Y )  =  ( <. Y ,  X >. (comp `  C
) Y )
211, 7, 12, 4, 5, 6, 9, 19, 20invcoisoid 16452 . . . . . . 7  |-  ( ph  ->  ( ( ( Y N X ) `  F ) ( <. Y ,  X >. (comp `  C ) Y ) F )  =  ( ( Id `  C
) `  Y )
)
2221eqcomd 2628 . . . . . 6  |-  ( ph  ->  ( ( Id `  C ) `  Y
)  =  ( ( ( Y N X ) `  F ) ( <. Y ,  X >. (comp `  C ) Y ) F ) )
2322oveq2d 6666 . . . . 5  |-  ( ph  ->  ( G ( <. Y ,  Y >. (comp `  C ) Z ) ( ( Id `  C ) `  Y
) )  =  ( G ( <. Y ,  Y >. (comp `  C
) Z ) ( ( ( Y N X ) `  F
) ( <. Y ,  X >. (comp `  C
) Y ) F ) ) )
241, 2, 19, 4, 5, 3, 16, 17catrid 16345 . . . . 5  |-  ( ph  ->  ( G ( <. Y ,  Y >. (comp `  C ) Z ) ( ( Id `  C ) `  Y
) )  =  G )
2518, 23, 243eqtr2rd 2663 . . . 4  |-  ( ph  ->  G  =  ( ( G ( <. X ,  Y >. (comp `  C
) Z ) ( ( Y N X ) `  F ) ) ( <. Y ,  X >. (comp `  C
) Z ) F ) )
2625adantr 481 . . 3  |-  ( (
ph  /\  ( G  .o.  R )  =  ( H  .o.  R ) )  ->  G  =  ( ( G (
<. X ,  Y >. (comp `  C ) Z ) ( ( Y N X ) `  F
) ) ( <. Y ,  X >. (comp `  C ) Z ) F ) )
27 rcaninv.o . . . . . . . . 9  |-  .o.  =  ( <. X ,  Y >. (comp `  C ) Z )
2827eqcomi 2631 . . . . . . . 8  |-  ( <. X ,  Y >. (comp `  C ) Z )  =  .o.
2928a1i 11 . . . . . . 7  |-  ( ph  ->  ( <. X ,  Y >. (comp `  C ) Z )  =  .o.  )
30 eqidd 2623 . . . . . . 7  |-  ( ph  ->  G  =  G )
31 rcaninv.1 . . . . . . . . 9  |-  R  =  ( ( Y N X ) `  F
)
3231eqcomi 2631 . . . . . . . 8  |-  ( ( Y N X ) `
 F )  =  R
3332a1i 11 . . . . . . 7  |-  ( ph  ->  ( ( Y N X ) `  F
)  =  R )
3429, 30, 33oveq123d 6671 . . . . . 6  |-  ( ph  ->  ( G ( <. X ,  Y >. (comp `  C ) Z ) ( ( Y N X ) `  F
) )  =  ( G  .o.  R ) )
3534adantr 481 . . . . 5  |-  ( (
ph  /\  ( G  .o.  R )  =  ( H  .o.  R ) )  ->  ( G
( <. X ,  Y >. (comp `  C ) Z ) ( ( Y N X ) `
 F ) )  =  ( G  .o.  R ) )
36 simpr 477 . . . . 5  |-  ( (
ph  /\  ( G  .o.  R )  =  ( H  .o.  R ) )  ->  ( G  .o.  R )  =  ( H  .o.  R ) )
3735, 36eqtrd 2656 . . . 4  |-  ( (
ph  /\  ( G  .o.  R )  =  ( H  .o.  R ) )  ->  ( G
( <. X ,  Y >. (comp `  C ) Z ) ( ( Y N X ) `
 F ) )  =  ( H  .o.  R ) )
3837oveq1d 6665 . . 3  |-  ( (
ph  /\  ( G  .o.  R )  =  ( H  .o.  R ) )  ->  ( ( G ( <. X ,  Y >. (comp `  C
) Z ) ( ( Y N X ) `  F ) ) ( <. Y ,  X >. (comp `  C
) Z ) F )  =  ( ( H  .o.  R ) ( <. Y ,  X >. (comp `  C ) Z ) F ) )
3927oveqi 6663 . . . . . . 7  |-  ( H  .o.  R )  =  ( H ( <. X ,  Y >. (comp `  C ) Z ) R )
4039oveq1i 6660 . . . . . 6  |-  ( ( H  .o.  R ) ( <. Y ,  X >. (comp `  C ) Z ) F )  =  ( ( H ( <. X ,  Y >. (comp `  C ) Z ) R ) ( <. Y ,  X >. (comp `  C ) Z ) F )
4140a1i 11 . . . . 5  |-  ( ph  ->  ( ( H  .o.  R ) ( <. Y ,  X >. (comp `  C ) Z ) F )  =  ( ( H ( <. X ,  Y >. (comp `  C ) Z ) R ) ( <. Y ,  X >. (comp `  C ) Z ) F ) )
4231, 15syl5eqel 2705 . . . . . . 7  |-  ( ph  ->  R  e.  ( X ( Hom  `  C
) Y ) )
43 rcaninv.h . . . . . . 7  |-  ( ph  ->  H  e.  ( Y ( Hom  `  C
) Z ) )
441, 2, 3, 4, 5, 6, 5, 10, 42, 16, 43catass 16347 . . . . . 6  |-  ( ph  ->  ( ( H (
<. X ,  Y >. (comp `  C ) Z ) R ) ( <. Y ,  X >. (comp `  C ) Z ) F )  =  ( H ( <. Y ,  Y >. (comp `  C
) Z ) ( R ( <. Y ,  X >. (comp `  C
) Y ) F ) ) )
4531oveq1i 6660 . . . . . . . 8  |-  ( R ( <. Y ,  X >. (comp `  C ) Y ) F )  =  ( ( ( Y N X ) `
 F ) (
<. Y ,  X >. (comp `  C ) Y ) F )
4645oveq2i 6661 . . . . . . 7  |-  ( H ( <. Y ,  Y >. (comp `  C ) Z ) ( R ( <. Y ,  X >. (comp `  C ) Y ) F ) )  =  ( H ( <. Y ,  Y >. (comp `  C ) Z ) ( ( ( Y N X ) `  F ) ( <. Y ,  X >. (comp `  C ) Y ) F ) )
4746a1i 11 . . . . . 6  |-  ( ph  ->  ( H ( <. Y ,  Y >. (comp `  C ) Z ) ( R ( <. Y ,  X >. (comp `  C ) Y ) F ) )  =  ( H ( <. Y ,  Y >. (comp `  C ) Z ) ( ( ( Y N X ) `  F ) ( <. Y ,  X >. (comp `  C ) Y ) F ) ) )
4821oveq2d 6666 . . . . . 6  |-  ( ph  ->  ( H ( <. Y ,  Y >. (comp `  C ) Z ) ( ( ( Y N X ) `  F ) ( <. Y ,  X >. (comp `  C ) Y ) F ) )  =  ( H ( <. Y ,  Y >. (comp `  C ) Z ) ( ( Id `  C ) `  Y
) ) )
4944, 47, 483eqtrd 2660 . . . . 5  |-  ( ph  ->  ( ( H (
<. X ,  Y >. (comp `  C ) Z ) R ) ( <. Y ,  X >. (comp `  C ) Z ) F )  =  ( H ( <. Y ,  Y >. (comp `  C
) Z ) ( ( Id `  C
) `  Y )
) )
501, 2, 19, 4, 5, 3, 16, 43catrid 16345 . . . . 5  |-  ( ph  ->  ( H ( <. Y ,  Y >. (comp `  C ) Z ) ( ( Id `  C ) `  Y
) )  =  H )
5141, 49, 503eqtrd 2660 . . . 4  |-  ( ph  ->  ( ( H  .o.  R ) ( <. Y ,  X >. (comp `  C ) Z ) F )  =  H )
5251adantr 481 . . 3  |-  ( (
ph  /\  ( G  .o.  R )  =  ( H  .o.  R ) )  ->  ( ( H  .o.  R ) (
<. Y ,  X >. (comp `  C ) Z ) F )  =  H )
5326, 38, 523eqtrd 2660 . 2  |-  ( (
ph  /\  ( G  .o.  R )  =  ( H  .o.  R ) )  ->  G  =  H )
5453ex 450 1  |-  ( ph  ->  ( ( G  .o.  R )  =  ( H  .o.  R )  ->  G  =  H ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   <.cop 4183   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325   Idccid 16326  Invcinv 16405    Iso ciso 16406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-cat 16329  df-cid 16330  df-sect 16407  df-inv 16408  df-iso 16409
This theorem is referenced by:  initoeu2lem0  16663
  Copyright terms: Public domain W3C validator