MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isocoinvid Structured version   Visualization version   Unicode version

Theorem isocoinvid 16453
Description: The inverse of an isomorphism composed with the isomorphism is the identity. (Contributed by AV, 10-Apr-2017.)
Hypotheses
Ref Expression
invisoinv.b  |-  B  =  ( Base `  C
)
invisoinv.i  |-  I  =  (  Iso  `  C
)
invisoinv.n  |-  N  =  (Inv `  C )
invisoinv.c  |-  ( ph  ->  C  e.  Cat )
invisoinv.x  |-  ( ph  ->  X  e.  B )
invisoinv.y  |-  ( ph  ->  Y  e.  B )
invisoinv.f  |-  ( ph  ->  F  e.  ( X I Y ) )
invcoisoid.1  |-  .1.  =  ( Id `  C )
isocoinvid.o  |-  .o.  =  ( <. Y ,  X >. (comp `  C ) Y )
Assertion
Ref Expression
isocoinvid  |-  ( ph  ->  ( F  .o.  (
( X N Y ) `  F ) )  =  (  .1.  `  Y ) )

Proof of Theorem isocoinvid
StepHypRef Expression
1 invisoinv.b . . . 4  |-  B  =  ( Base `  C
)
2 invisoinv.i . . . 4  |-  I  =  (  Iso  `  C
)
3 invisoinv.n . . . 4  |-  N  =  (Inv `  C )
4 invisoinv.c . . . 4  |-  ( ph  ->  C  e.  Cat )
5 invisoinv.x . . . 4  |-  ( ph  ->  X  e.  B )
6 invisoinv.y . . . 4  |-  ( ph  ->  Y  e.  B )
7 invisoinv.f . . . 4  |-  ( ph  ->  F  e.  ( X I Y ) )
81, 2, 3, 4, 5, 6, 7invisoinvl 16450 . . 3  |-  ( ph  ->  ( ( X N Y ) `  F
) ( Y N X ) F )
9 eqid 2622 . . . . 5  |-  (Sect `  C )  =  (Sect `  C )
101, 3, 4, 6, 5, 9isinv 16420 . . . 4  |-  ( ph  ->  ( ( ( X N Y ) `  F ) ( Y N X ) F  <-> 
( ( ( X N Y ) `  F ) ( Y (Sect `  C ) X ) F  /\  F ( X (Sect `  C ) Y ) ( ( X N Y ) `  F
) ) ) )
11 simpl 473 . . . 4  |-  ( ( ( ( X N Y ) `  F
) ( Y (Sect `  C ) X ) F  /\  F ( X (Sect `  C
) Y ) ( ( X N Y ) `  F ) )  ->  ( ( X N Y ) `  F ) ( Y (Sect `  C ) X ) F )
1210, 11syl6bi 243 . . 3  |-  ( ph  ->  ( ( ( X N Y ) `  F ) ( Y N X ) F  ->  ( ( X N Y ) `  F ) ( Y (Sect `  C ) X ) F ) )
138, 12mpd 15 . 2  |-  ( ph  ->  ( ( X N Y ) `  F
) ( Y (Sect `  C ) X ) F )
14 eqid 2622 . . . 4  |-  ( Hom  `  C )  =  ( Hom  `  C )
15 eqid 2622 . . . 4  |-  (comp `  C )  =  (comp `  C )
16 invcoisoid.1 . . . 4  |-  .1.  =  ( Id `  C )
171, 14, 2, 4, 6, 5isohom 16436 . . . . 5  |-  ( ph  ->  ( Y I X )  C_  ( Y
( Hom  `  C ) X ) )
181, 3, 4, 5, 6, 2invf 16428 . . . . . 6  |-  ( ph  ->  ( X N Y ) : ( X I Y ) --> ( Y I X ) )
1918, 7ffvelrnd 6360 . . . . 5  |-  ( ph  ->  ( ( X N Y ) `  F
)  e.  ( Y I X ) )
2017, 19sseldd 3604 . . . 4  |-  ( ph  ->  ( ( X N Y ) `  F
)  e.  ( Y ( Hom  `  C
) X ) )
211, 14, 2, 4, 5, 6isohom 16436 . . . . 5  |-  ( ph  ->  ( X I Y )  C_  ( X
( Hom  `  C ) Y ) )
2221, 7sseldd 3604 . . . 4  |-  ( ph  ->  F  e.  ( X ( Hom  `  C
) Y ) )
231, 14, 15, 16, 9, 4, 6, 5, 20, 22issect2 16414 . . 3  |-  ( ph  ->  ( ( ( X N Y ) `  F ) ( Y (Sect `  C ) X ) F  <->  ( F
( <. Y ,  X >. (comp `  C ) Y ) ( ( X N Y ) `
 F ) )  =  (  .1.  `  Y ) ) )
24 isocoinvid.o . . . . . . 7  |-  .o.  =  ( <. Y ,  X >. (comp `  C ) Y )
2524a1i 11 . . . . . 6  |-  ( ph  ->  .o.  =  ( <. Y ,  X >. (comp `  C ) Y ) )
2625eqcomd 2628 . . . . 5  |-  ( ph  ->  ( <. Y ,  X >. (comp `  C ) Y )  =  .o.  )
2726oveqd 6667 . . . 4  |-  ( ph  ->  ( F ( <. Y ,  X >. (comp `  C ) Y ) ( ( X N Y ) `  F
) )  =  ( F  .o.  ( ( X N Y ) `
 F ) ) )
2827eqeq1d 2624 . . 3  |-  ( ph  ->  ( ( F (
<. Y ,  X >. (comp `  C ) Y ) ( ( X N Y ) `  F
) )  =  (  .1.  `  Y )  <->  ( F  .o.  ( ( X N Y ) `
 F ) )  =  (  .1.  `  Y ) ) )
2923, 28bitrd 268 . 2  |-  ( ph  ->  ( ( ( X N Y ) `  F ) ( Y (Sect `  C ) X ) F  <->  ( F  .o.  ( ( X N Y ) `  F
) )  =  (  .1.  `  Y )
) )
3013, 29mpbid 222 1  |-  ( ph  ->  ( F  .o.  (
( X N Y ) `  F ) )  =  (  .1.  `  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   <.cop 4183   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325   Idccid 16326  Sectcsect 16404  Invcinv 16405    Iso ciso 16406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-cat 16329  df-cid 16330  df-sect 16407  df-inv 16408  df-iso 16409
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator