Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ffsrn Structured version   Visualization version   Unicode version

Theorem ffsrn 29504
Description: The range of a finitely supported function is finite. (Contributed by Thierry Arnoux, 27-Aug-2017.)
Hypotheses
Ref Expression
ffsrn.z  |-  ( ph  ->  Z  e.  W )
ffsrn.0  |-  ( ph  ->  F  e.  V )
ffsrn.1  |-  ( ph  ->  Fun  F )
ffsrn.2  |-  ( ph  ->  ( F supp  Z )  e.  Fin )
Assertion
Ref Expression
ffsrn  |-  ( ph  ->  ran  F  e.  Fin )

Proof of Theorem ffsrn
StepHypRef Expression
1 imaundi 5545 . . . . . . 7  |-  ( `' F " ( ( _V  \  { Z } )  u.  { Z } ) )  =  ( ( `' F " ( _V  \  { Z } ) )  u.  ( `' F " { Z } ) )
21reseq2i 5393 . . . . . 6  |-  ( F  |`  ( `' F "
( ( _V  \  { Z } )  u. 
{ Z } ) ) )  =  ( F  |`  ( ( `' F " ( _V 
\  { Z }
) )  u.  ( `' F " { Z } ) ) )
3 undif1 4043 . . . . . . . . 9  |-  ( ( _V  \  { Z } )  u.  { Z } )  =  ( _V  u.  { Z } )
4 ssv 3625 . . . . . . . . . 10  |-  { Z }  C_  _V
5 ssequn2 3786 . . . . . . . . . 10  |-  ( { Z }  C_  _V  <->  ( _V  u.  { Z } )  =  _V )
64, 5mpbi 220 . . . . . . . . 9  |-  ( _V  u.  { Z }
)  =  _V
73, 6eqtri 2644 . . . . . . . 8  |-  ( ( _V  \  { Z } )  u.  { Z } )  =  _V
87imaeq2i 5464 . . . . . . 7  |-  ( `' F " ( ( _V  \  { Z } )  u.  { Z } ) )  =  ( `' F " _V )
98reseq2i 5393 . . . . . 6  |-  ( F  |`  ( `' F "
( ( _V  \  { Z } )  u. 
{ Z } ) ) )  =  ( F  |`  ( `' F " _V ) )
10 resundi 5410 . . . . . 6  |-  ( F  |`  ( ( `' F " ( _V  \  { Z } ) )  u.  ( `' F " { Z } ) ) )  =  ( ( F  |`  ( `' F " ( _V  \  { Z } ) ) )  u.  ( F  |`  ( `' F " { Z } ) ) )
112, 9, 103eqtr3i 2652 . . . . 5  |-  ( F  |`  ( `' F " _V ) )  =  ( ( F  |`  ( `' F " ( _V 
\  { Z }
) ) )  u.  ( F  |`  ( `' F " { Z } ) ) )
12 ffsrn.1 . . . . . 6  |-  ( ph  ->  Fun  F )
13 dfdm4 5316 . . . . . . 7  |-  dom  F  =  ran  `' F
14 dfrn4 5595 . . . . . . 7  |-  ran  `' F  =  ( `' F " _V )
1513, 14eqtri 2644 . . . . . 6  |-  dom  F  =  ( `' F " _V )
16 df-fn 5891 . . . . . . 7  |-  ( F  Fn  ( `' F " _V )  <->  ( Fun  F  /\  dom  F  =  ( `' F " _V ) ) )
17 fnresdm 6000 . . . . . . 7  |-  ( F  Fn  ( `' F " _V )  ->  ( F  |`  ( `' F " _V ) )  =  F )
1816, 17sylbir 225 . . . . . 6  |-  ( ( Fun  F  /\  dom  F  =  ( `' F " _V ) )  -> 
( F  |`  ( `' F " _V )
)  =  F )
1912, 15, 18sylancl 694 . . . . 5  |-  ( ph  ->  ( F  |`  ( `' F " _V )
)  =  F )
2011, 19syl5reqr 2671 . . . 4  |-  ( ph  ->  F  =  ( ( F  |`  ( `' F " ( _V  \  { Z } ) ) )  u.  ( F  |`  ( `' F " { Z } ) ) ) )
2120rneqd 5353 . . 3  |-  ( ph  ->  ran  F  =  ran  ( ( F  |`  ( `' F " ( _V 
\  { Z }
) ) )  u.  ( F  |`  ( `' F " { Z } ) ) ) )
22 rnun 5541 . . 3  |-  ran  (
( F  |`  ( `' F " ( _V 
\  { Z }
) ) )  u.  ( F  |`  ( `' F " { Z } ) ) )  =  ( ran  ( F  |`  ( `' F " ( _V  \  { Z } ) ) )  u.  ran  ( F  |`  ( `' F " { Z } ) ) )
2321, 22syl6eq 2672 . 2  |-  ( ph  ->  ran  F  =  ( ran  ( F  |`  ( `' F " ( _V 
\  { Z }
) ) )  u. 
ran  ( F  |`  ( `' F " { Z } ) ) ) )
24 ffsrn.0 . . . . . 6  |-  ( ph  ->  F  e.  V )
25 ffsrn.z . . . . . 6  |-  ( ph  ->  Z  e.  W )
26 suppimacnv 7306 . . . . . 6  |-  ( ( F  e.  V  /\  Z  e.  W )  ->  ( F supp  Z )  =  ( `' F " ( _V  \  { Z } ) ) )
2724, 25, 26syl2anc 693 . . . . 5  |-  ( ph  ->  ( F supp  Z )  =  ( `' F " ( _V  \  { Z } ) ) )
28 ffsrn.2 . . . . 5  |-  ( ph  ->  ( F supp  Z )  e.  Fin )
2927, 28eqeltrrd 2702 . . . 4  |-  ( ph  ->  ( `' F "
( _V  \  { Z } ) )  e. 
Fin )
30 cnvexg 7112 . . . . . 6  |-  ( F  e.  V  ->  `' F  e.  _V )
31 imaexg 7103 . . . . . 6  |-  ( `' F  e.  _V  ->  ( `' F " ( _V 
\  { Z }
) )  e.  _V )
3224, 30, 313syl 18 . . . . 5  |-  ( ph  ->  ( `' F "
( _V  \  { Z } ) )  e. 
_V )
33 cnvimass 5485 . . . . . . 7  |-  ( `' F " ( _V 
\  { Z }
) )  C_  dom  F
34 fores 6124 . . . . . . 7  |-  ( ( Fun  F  /\  ( `' F " ( _V 
\  { Z }
) )  C_  dom  F )  ->  ( F  |`  ( `' F "
( _V  \  { Z } ) ) ) : ( `' F " ( _V  \  { Z } ) ) -onto-> ( F " ( `' F " ( _V 
\  { Z }
) ) ) )
3512, 33, 34sylancl 694 . . . . . 6  |-  ( ph  ->  ( F  |`  ( `' F " ( _V 
\  { Z }
) ) ) : ( `' F "
( _V  \  { Z } ) ) -onto-> ( F " ( `' F " ( _V 
\  { Z }
) ) ) )
36 fofn 6117 . . . . . 6  |-  ( ( F  |`  ( `' F " ( _V  \  { Z } ) ) ) : ( `' F " ( _V 
\  { Z }
) ) -onto-> ( F
" ( `' F " ( _V  \  { Z } ) ) )  ->  ( F  |`  ( `' F " ( _V 
\  { Z }
) ) )  Fn  ( `' F "
( _V  \  { Z } ) ) )
3735, 36syl 17 . . . . 5  |-  ( ph  ->  ( F  |`  ( `' F " ( _V 
\  { Z }
) ) )  Fn  ( `' F "
( _V  \  { Z } ) ) )
38 fnrndomg 9358 . . . . 5  |-  ( ( `' F " ( _V 
\  { Z }
) )  e.  _V  ->  ( ( F  |`  ( `' F " ( _V 
\  { Z }
) ) )  Fn  ( `' F "
( _V  \  { Z } ) )  ->  ran  ( F  |`  ( `' F " ( _V 
\  { Z }
) ) )  ~<_  ( `' F " ( _V 
\  { Z }
) ) ) )
3932, 37, 38sylc 65 . . . 4  |-  ( ph  ->  ran  ( F  |`  ( `' F " ( _V 
\  { Z }
) ) )  ~<_  ( `' F " ( _V 
\  { Z }
) ) )
40 domfi 8181 . . . 4  |-  ( ( ( `' F "
( _V  \  { Z } ) )  e. 
Fin  /\  ran  ( F  |`  ( `' F "
( _V  \  { Z } ) ) )  ~<_  ( `' F "
( _V  \  { Z } ) ) )  ->  ran  ( F  |`  ( `' F "
( _V  \  { Z } ) ) )  e.  Fin )
4129, 39, 40syl2anc 693 . . 3  |-  ( ph  ->  ran  ( F  |`  ( `' F " ( _V 
\  { Z }
) ) )  e. 
Fin )
42 snfi 8038 . . . 4  |-  { Z }  e.  Fin
43 df-ima 5127 . . . . . 6  |-  ( F
" ( `' F " { Z } ) )  =  ran  ( F  |`  ( `' F " { Z } ) )
44 funimacnv 5970 . . . . . . 7  |-  ( Fun 
F  ->  ( F " ( `' F " { Z } ) )  =  ( { Z }  i^i  ran  F )
)
4512, 44syl 17 . . . . . 6  |-  ( ph  ->  ( F " ( `' F " { Z } ) )  =  ( { Z }  i^i  ran  F ) )
4643, 45syl5eqr 2670 . . . . 5  |-  ( ph  ->  ran  ( F  |`  ( `' F " { Z } ) )  =  ( { Z }  i^i  ran  F ) )
47 inss1 3833 . . . . 5  |-  ( { Z }  i^i  ran  F )  C_  { Z }
4846, 47syl6eqss 3655 . . . 4  |-  ( ph  ->  ran  ( F  |`  ( `' F " { Z } ) )  C_  { Z } )
49 ssfi 8180 . . . 4  |-  ( ( { Z }  e.  Fin  /\  ran  ( F  |`  ( `' F " { Z } ) ) 
C_  { Z }
)  ->  ran  ( F  |`  ( `' F " { Z } ) )  e.  Fin )
5042, 48, 49sylancr 695 . . 3  |-  ( ph  ->  ran  ( F  |`  ( `' F " { Z } ) )  e. 
Fin )
51 unfi 8227 . . 3  |-  ( ( ran  ( F  |`  ( `' F " ( _V 
\  { Z }
) ) )  e. 
Fin  /\  ran  ( F  |`  ( `' F " { Z } ) )  e.  Fin )  -> 
( ran  ( F  |`  ( `' F "
( _V  \  { Z } ) ) )  u.  ran  ( F  |`  ( `' F " { Z } ) ) )  e.  Fin )
5241, 50, 51syl2anc 693 . 2  |-  ( ph  ->  ( ran  ( F  |`  ( `' F "
( _V  \  { Z } ) ) )  u.  ran  ( F  |`  ( `' F " { Z } ) ) )  e.  Fin )
5323, 52eqeltrd 2701 1  |-  ( ph  ->  ran  F  e.  Fin )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   {csn 4177   class class class wbr 4653   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Fun wfun 5882    Fn wfn 5883   -onto->wfo 5886  (class class class)co 6650   supp csupp 7295    ~<_ cdom 7953   Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-ac2 9285
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-fin 7959  df-card 8765  df-acn 8768  df-ac 8939
This theorem is referenced by:  fpwrelmapffslem  29507
  Copyright terms: Public domain W3C validator