MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunconn Structured version   Visualization version   Unicode version

Theorem iunconn 21231
Description: The indexed union of connected overlapping subspaces sharing a common point is connected. (Contributed by Mario Carneiro, 11-Jun-2014.)
Hypotheses
Ref Expression
iunconn.2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
iunconn.3  |-  ( (
ph  /\  k  e.  A )  ->  B  C_  X )
iunconn.4  |-  ( (
ph  /\  k  e.  A )  ->  P  e.  B )
iunconn.5  |-  ( (
ph  /\  k  e.  A )  ->  ( Jt  B )  e. Conn )
Assertion
Ref Expression
iunconn  |-  ( ph  ->  ( Jt  U_ k  e.  A  B )  e. Conn )
Distinct variable groups:    A, k    k, J    P, k    k, X    ph, k
Allowed substitution hint:    B( k)

Proof of Theorem iunconn
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . . . 7  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  U_ k  e.  A  B  C_  (
u  u.  v ) )
2 simplr1 1103 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  ( u  i^i  U_ k  e.  A  B )  =/=  (/) )
3 n0 3931 . . . . . . . . . . 11  |-  ( ( u  i^i  U_ k  e.  A  B )  =/=  (/)  <->  E. v  v  e.  ( u  i^i  U_ k  e.  A  B
) )
4 inss2 3834 . . . . . . . . . . . . . 14  |-  ( u  i^i  U_ k  e.  A  B )  C_  U_ k  e.  A  B
54sseli 3599 . . . . . . . . . . . . 13  |-  ( v  e.  ( u  i^i  U_ k  e.  A  B )  ->  v  e.  U_ k  e.  A  B )
6 eliun 4524 . . . . . . . . . . . . . 14  |-  ( v  e.  U_ k  e.  A  B  <->  E. k  e.  A  v  e.  B )
7 rexn0 4074 . . . . . . . . . . . . . 14  |-  ( E. k  e.  A  v  e.  B  ->  A  =/=  (/) )
86, 7sylbi 207 . . . . . . . . . . . . 13  |-  ( v  e.  U_ k  e.  A  B  ->  A  =/=  (/) )
95, 8syl 17 . . . . . . . . . . . 12  |-  ( v  e.  ( u  i^i  U_ k  e.  A  B )  ->  A  =/=  (/) )
109exlimiv 1858 . . . . . . . . . . 11  |-  ( E. v  v  e.  ( u  i^i  U_ k  e.  A  B )  ->  A  =/=  (/) )
113, 10sylbi 207 . . . . . . . . . 10  |-  ( ( u  i^i  U_ k  e.  A  B )  =/=  (/)  ->  A  =/=  (/) )
122, 11syl 17 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  A  =/=  (/) )
13 simplll 798 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  ph )
14 iunconn.4 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  P  e.  B )
1514ralrimiva 2966 . . . . . . . . . 10  |-  ( ph  ->  A. k  e.  A  P  e.  B )
1613, 15syl 17 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  A. k  e.  A  P  e.  B )
17 r19.2z 4060 . . . . . . . . 9  |-  ( ( A  =/=  (/)  /\  A. k  e.  A  P  e.  B )  ->  E. k  e.  A  P  e.  B )
1812, 16, 17syl2anc 693 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  E. k  e.  A  P  e.  B )
19 eliun 4524 . . . . . . . 8  |-  ( P  e.  U_ k  e.  A  B  <->  E. k  e.  A  P  e.  B )
2018, 19sylibr 224 . . . . . . 7  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  P  e.  U_ k  e.  A  B
)
211, 20sseldd 3604 . . . . . 6  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  P  e.  ( u  u.  v
) )
22 elun 3753 . . . . . 6  |-  ( P  e.  ( u  u.  v )  <->  ( P  e.  u  \/  P  e.  v ) )
2321, 22sylib 208 . . . . 5  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  ( P  e.  u  \/  P  e.  v ) )
24 iunconn.2 . . . . . . . 8  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2513, 24syl 17 . . . . . . 7  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  J  e.  (TopOn `  X ) )
26 iunconn.3 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  B  C_  X )
2713, 26sylan 488 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  /\  k  e.  A )  ->  B  C_  X )
2813, 14sylan 488 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  /\  k  e.  A )  ->  P  e.  B )
29 iunconn.5 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  ( Jt  B )  e. Conn )
3013, 29sylan 488 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  /\  k  e.  A )  ->  ( Jt  B )  e. Conn )
31 simpllr 799 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  ( u  e.  J  /\  v  e.  J ) )
3231simpld 475 . . . . . . 7  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  u  e.  J )
3331simprd 479 . . . . . . 7  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  v  e.  J )
34 simplr2 1104 . . . . . . 7  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  ( v  i^i  U_ k  e.  A  B )  =/=  (/) )
35 simplr3 1105 . . . . . . 7  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) )
36 nfv 1843 . . . . . . . . 9  |-  F/ k ( ph  /\  (
u  e.  J  /\  v  e.  J )
)
37 nfcv 2764 . . . . . . . . . . . 12  |-  F/_ k
u
38 nfiu1 4550 . . . . . . . . . . . 12  |-  F/_ k U_ k  e.  A  B
3937, 38nfin 3820 . . . . . . . . . . 11  |-  F/_ k
( u  i^i  U_ k  e.  A  B
)
40 nfcv 2764 . . . . . . . . . . 11  |-  F/_ k (/)
4139, 40nfne 2894 . . . . . . . . . 10  |-  F/ k ( u  i^i  U_ k  e.  A  B
)  =/=  (/)
42 nfcv 2764 . . . . . . . . . . . 12  |-  F/_ k
v
4342, 38nfin 3820 . . . . . . . . . . 11  |-  F/_ k
( v  i^i  U_ k  e.  A  B
)
4443, 40nfne 2894 . . . . . . . . . 10  |-  F/ k ( v  i^i  U_ k  e.  A  B
)  =/=  (/)
45 nfcv 2764 . . . . . . . . . . 11  |-  F/_ k
( u  i^i  v
)
46 nfcv 2764 . . . . . . . . . . . 12  |-  F/_ k X
4746, 38nfdif 3731 . . . . . . . . . . 11  |-  F/_ k
( X  \  U_ k  e.  A  B
)
4845, 47nfss 3596 . . . . . . . . . 10  |-  F/ k ( u  i^i  v
)  C_  ( X  \ 
U_ k  e.  A  B )
4941, 44, 48nf3an 1831 . . . . . . . . 9  |-  F/ k ( ( u  i^i  U_ k  e.  A  B )  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) )
5036, 49nfan 1828 . . . . . . . 8  |-  F/ k ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )
5137, 42nfun 3769 . . . . . . . . 9  |-  F/_ k
( u  u.  v
)
5238, 51nfss 3596 . . . . . . . 8  |-  F/ k
U_ k  e.  A  B  C_  ( u  u.  v )
5350, 52nfan 1828 . . . . . . 7  |-  F/ k ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )
5425, 27, 28, 30, 32, 33, 34, 35, 1, 53iunconnlem 21230 . . . . . 6  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  -.  P  e.  u )
55 incom 3805 . . . . . . . 8  |-  ( v  i^i  u )  =  ( u  i^i  v
)
5655, 35syl5eqss 3649 . . . . . . 7  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  ( v  i^i  u )  C_  ( X  \  U_ k  e.  A  B ) )
57 uncom 3757 . . . . . . . 8  |-  ( u  u.  v )  =  ( v  u.  u
)
581, 57syl6sseq 3651 . . . . . . 7  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  U_ k  e.  A  B  C_  (
v  u.  u ) )
5925, 27, 28, 30, 33, 32, 2, 56, 58, 53iunconnlem 21230 . . . . . 6  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  -.  P  e.  v )
60 ioran 511 . . . . . 6  |-  ( -.  ( P  e.  u  \/  P  e.  v
)  <->  ( -.  P  e.  u  /\  -.  P  e.  v ) )
6154, 59, 60sylanbrc 698 . . . . 5  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  -.  ( P  e.  u  \/  P  e.  v )
)
6223, 61pm2.65da 600 . . . 4  |-  ( ( ( ph  /\  (
u  e.  J  /\  v  e.  J )
)  /\  ( (
u  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  (
u  i^i  v )  C_  ( X  \  U_ k  e.  A  B
) ) )  ->  -.  U_ k  e.  A  B  C_  ( u  u.  v ) )
6362ex 450 . . 3  |-  ( (
ph  /\  ( u  e.  J  /\  v  e.  J ) )  -> 
( ( ( u  i^i  U_ k  e.  A  B )  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) )  ->  -.  U_ k  e.  A  B  C_  (
u  u.  v ) ) )
6463ralrimivva 2971 . 2  |-  ( ph  ->  A. u  e.  J  A. v  e.  J  ( ( ( u  i^i  U_ k  e.  A  B )  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) )  ->  -.  U_ k  e.  A  B  C_  (
u  u.  v ) ) )
6526ralrimiva 2966 . . . 4  |-  ( ph  ->  A. k  e.  A  B  C_  X )
66 iunss 4561 . . . 4  |-  ( U_ k  e.  A  B  C_  X  <->  A. k  e.  A  B  C_  X )
6765, 66sylibr 224 . . 3  |-  ( ph  ->  U_ k  e.  A  B  C_  X )
68 connsub 21224 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  U_ k  e.  A  B  C_  X )  ->  (
( Jt  U_ k  e.  A  B )  e. Conn  <->  A. u  e.  J  A. v  e.  J  ( (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) )  ->  -.  U_ k  e.  A  B  C_  (
u  u.  v ) ) ) )
6924, 67, 68syl2anc 693 . 2  |-  ( ph  ->  ( ( Jt  U_ k  e.  A  B )  e. Conn  <->  A. u  e.  J  A. v  e.  J  ( ( ( u  i^i  U_ k  e.  A  B )  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) )  ->  -.  U_ k  e.  A  B  C_  (
u  u.  v ) ) ) )
7064, 69mpbird 247 1  |-  ( ph  ->  ( Jt  U_ k  e.  A  B )  e. Conn )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   U_ciun 4520   ` cfv 5888  (class class class)co 6650   ↾t crest 16081  TopOnctopon 20715  Conncconn 21214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-conn 21215
This theorem is referenced by:  unconn  21232  conncompconn  21235
  Copyright terms: Public domain W3C validator