MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sectmon Structured version   Visualization version   Unicode version

Theorem sectmon 16442
Description: If  F is a section of  G, then  F is a monomorphism. A monomorphism that arises from a section is also known as a split monomorphism. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
sectmon.b  |-  B  =  ( Base `  C
)
sectmon.m  |-  M  =  (Mono `  C )
sectmon.s  |-  S  =  (Sect `  C )
sectmon.c  |-  ( ph  ->  C  e.  Cat )
sectmon.x  |-  ( ph  ->  X  e.  B )
sectmon.y  |-  ( ph  ->  Y  e.  B )
sectmon.1  |-  ( ph  ->  F ( X S Y ) G )
Assertion
Ref Expression
sectmon  |-  ( ph  ->  F  e.  ( X M Y ) )

Proof of Theorem sectmon
Dummy variables  g  h  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sectmon.1 . . . 4  |-  ( ph  ->  F ( X S Y ) G )
2 sectmon.b . . . . 5  |-  B  =  ( Base `  C
)
3 eqid 2622 . . . . 5  |-  ( Hom  `  C )  =  ( Hom  `  C )
4 eqid 2622 . . . . 5  |-  (comp `  C )  =  (comp `  C )
5 eqid 2622 . . . . 5  |-  ( Id
`  C )  =  ( Id `  C
)
6 sectmon.s . . . . 5  |-  S  =  (Sect `  C )
7 sectmon.c . . . . 5  |-  ( ph  ->  C  e.  Cat )
8 sectmon.x . . . . 5  |-  ( ph  ->  X  e.  B )
9 sectmon.y . . . . 5  |-  ( ph  ->  Y  e.  B )
102, 3, 4, 5, 6, 7, 8, 9issect 16413 . . . 4  |-  ( ph  ->  ( F ( X S Y ) G  <-> 
( F  e.  ( X ( Hom  `  C
) Y )  /\  G  e.  ( Y
( Hom  `  C ) X )  /\  ( G ( <. X ,  Y >. (comp `  C
) X ) F )  =  ( ( Id `  C ) `
 X ) ) ) )
111, 10mpbid 222 . . 3  |-  ( ph  ->  ( F  e.  ( X ( Hom  `  C
) Y )  /\  G  e.  ( Y
( Hom  `  C ) X )  /\  ( G ( <. X ,  Y >. (comp `  C
) X ) F )  =  ( ( Id `  C ) `
 X ) ) )
1211simp1d 1073 . 2  |-  ( ph  ->  F  e.  ( X ( Hom  `  C
) Y ) )
13 oveq2 6658 . . . . 5  |-  ( ( F ( <. x ,  X >. (comp `  C
) Y ) g )  =  ( F ( <. x ,  X >. (comp `  C ) Y ) h )  ->  ( G (
<. x ,  Y >. (comp `  C ) X ) ( F ( <.
x ,  X >. (comp `  C ) Y ) g ) )  =  ( G ( <.
x ,  Y >. (comp `  C ) X ) ( F ( <.
x ,  X >. (comp `  C ) Y ) h ) ) )
1411simp3d 1075 . . . . . . . . 9  |-  ( ph  ->  ( G ( <. X ,  Y >. (comp `  C ) X ) F )  =  ( ( Id `  C
) `  X )
)
1514ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x ( Hom  `  C
) X )  /\  h  e.  ( x
( Hom  `  C ) X ) ) )  ->  ( G (
<. X ,  Y >. (comp `  C ) X ) F )  =  ( ( Id `  C
) `  X )
)
1615oveq1d 6665 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x ( Hom  `  C
) X )  /\  h  e.  ( x
( Hom  `  C ) X ) ) )  ->  ( ( G ( <. X ,  Y >. (comp `  C ) X ) F ) ( <. x ,  X >. (comp `  C ) X ) g )  =  ( ( ( Id `  C ) `
 X ) (
<. x ,  X >. (comp `  C ) X ) g ) )
177ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x ( Hom  `  C
) X )  /\  h  e.  ( x
( Hom  `  C ) X ) ) )  ->  C  e.  Cat )
18 simplr 792 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x ( Hom  `  C
) X )  /\  h  e.  ( x
( Hom  `  C ) X ) ) )  ->  x  e.  B
)
198ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x ( Hom  `  C
) X )  /\  h  e.  ( x
( Hom  `  C ) X ) ) )  ->  X  e.  B
)
209ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x ( Hom  `  C
) X )  /\  h  e.  ( x
( Hom  `  C ) X ) ) )  ->  Y  e.  B
)
21 simprl 794 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x ( Hom  `  C
) X )  /\  h  e.  ( x
( Hom  `  C ) X ) ) )  ->  g  e.  ( x ( Hom  `  C
) X ) )
2212ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x ( Hom  `  C
) X )  /\  h  e.  ( x
( Hom  `  C ) X ) ) )  ->  F  e.  ( X ( Hom  `  C
) Y ) )
2311simp2d 1074 . . . . . . . . 9  |-  ( ph  ->  G  e.  ( Y ( Hom  `  C
) X ) )
2423ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x ( Hom  `  C
) X )  /\  h  e.  ( x
( Hom  `  C ) X ) ) )  ->  G  e.  ( Y ( Hom  `  C
) X ) )
252, 3, 4, 17, 18, 19, 20, 21, 22, 19, 24catass 16347 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x ( Hom  `  C
) X )  /\  h  e.  ( x
( Hom  `  C ) X ) ) )  ->  ( ( G ( <. X ,  Y >. (comp `  C ) X ) F ) ( <. x ,  X >. (comp `  C ) X ) g )  =  ( G (
<. x ,  Y >. (comp `  C ) X ) ( F ( <.
x ,  X >. (comp `  C ) Y ) g ) ) )
262, 3, 5, 17, 18, 4, 19, 21catlid 16344 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x ( Hom  `  C
) X )  /\  h  e.  ( x
( Hom  `  C ) X ) ) )  ->  ( ( ( Id `  C ) `
 X ) (
<. x ,  X >. (comp `  C ) X ) g )  =  g )
2716, 25, 263eqtr3d 2664 . . . . . 6  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x ( Hom  `  C
) X )  /\  h  e.  ( x
( Hom  `  C ) X ) ) )  ->  ( G (
<. x ,  Y >. (comp `  C ) X ) ( F ( <.
x ,  X >. (comp `  C ) Y ) g ) )  =  g )
2815oveq1d 6665 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x ( Hom  `  C
) X )  /\  h  e.  ( x
( Hom  `  C ) X ) ) )  ->  ( ( G ( <. X ,  Y >. (comp `  C ) X ) F ) ( <. x ,  X >. (comp `  C ) X ) h )  =  ( ( ( Id `  C ) `
 X ) (
<. x ,  X >. (comp `  C ) X ) h ) )
29 simprr 796 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x ( Hom  `  C
) X )  /\  h  e.  ( x
( Hom  `  C ) X ) ) )  ->  h  e.  ( x ( Hom  `  C
) X ) )
302, 3, 4, 17, 18, 19, 20, 29, 22, 19, 24catass 16347 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x ( Hom  `  C
) X )  /\  h  e.  ( x
( Hom  `  C ) X ) ) )  ->  ( ( G ( <. X ,  Y >. (comp `  C ) X ) F ) ( <. x ,  X >. (comp `  C ) X ) h )  =  ( G (
<. x ,  Y >. (comp `  C ) X ) ( F ( <.
x ,  X >. (comp `  C ) Y ) h ) ) )
312, 3, 5, 17, 18, 4, 19, 29catlid 16344 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x ( Hom  `  C
) X )  /\  h  e.  ( x
( Hom  `  C ) X ) ) )  ->  ( ( ( Id `  C ) `
 X ) (
<. x ,  X >. (comp `  C ) X ) h )  =  h )
3228, 30, 313eqtr3d 2664 . . . . . 6  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x ( Hom  `  C
) X )  /\  h  e.  ( x
( Hom  `  C ) X ) ) )  ->  ( G (
<. x ,  Y >. (comp `  C ) X ) ( F ( <.
x ,  X >. (comp `  C ) Y ) h ) )  =  h )
3327, 32eqeq12d 2637 . . . . 5  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x ( Hom  `  C
) X )  /\  h  e.  ( x
( Hom  `  C ) X ) ) )  ->  ( ( G ( <. x ,  Y >. (comp `  C ) X ) ( F ( <. x ,  X >. (comp `  C ) Y ) g ) )  =  ( G ( <. x ,  Y >. (comp `  C ) X ) ( F ( <. x ,  X >. (comp `  C ) Y ) h ) )  <->  g  =  h ) )
3413, 33syl5ib 234 . . . 4  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x ( Hom  `  C
) X )  /\  h  e.  ( x
( Hom  `  C ) X ) ) )  ->  ( ( F ( <. x ,  X >. (comp `  C ) Y ) g )  =  ( F (
<. x ,  X >. (comp `  C ) Y ) h )  ->  g  =  h ) )
3534ralrimivva 2971 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  A. g  e.  ( x ( Hom  `  C ) X ) A. h  e.  ( x ( Hom  `  C
) X ) ( ( F ( <.
x ,  X >. (comp `  C ) Y ) g )  =  ( F ( <. x ,  X >. (comp `  C
) Y ) h )  ->  g  =  h ) )
3635ralrimiva 2966 . 2  |-  ( ph  ->  A. x  e.  B  A. g  e.  (
x ( Hom  `  C
) X ) A. h  e.  ( x
( Hom  `  C ) X ) ( ( F ( <. x ,  X >. (comp `  C
) Y ) g )  =  ( F ( <. x ,  X >. (comp `  C ) Y ) h )  ->  g  =  h ) )
37 sectmon.m . . 3  |-  M  =  (Mono `  C )
382, 3, 4, 37, 7, 8, 9ismon2 16394 . 2  |-  ( ph  ->  ( F  e.  ( X M Y )  <-> 
( F  e.  ( X ( Hom  `  C
) Y )  /\  A. x  e.  B  A. g  e.  ( x
( Hom  `  C ) X ) A. h  e.  ( x ( Hom  `  C ) X ) ( ( F (
<. x ,  X >. (comp `  C ) Y ) g )  =  ( F ( <. x ,  X >. (comp `  C
) Y ) h )  ->  g  =  h ) ) ) )
3912, 36, 38mpbir2and 957 1  |-  ( ph  ->  F  e.  ( X M Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   <.cop 4183   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325   Idccid 16326  Monocmon 16388  Sectcsect 16404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-cat 16329  df-cid 16330  df-mon 16390  df-sect 16407
This theorem is referenced by:  sectepi  16444
  Copyright terms: Public domain W3C validator