MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfgrp3e Structured version   Visualization version   Unicode version

Theorem dfgrp3e 17515
Description: Alternate definition of a group as a set with a closed, associative operation, for which solutions  x and  y of the equations  ( a  .+  x )  =  b and  ( x  .+  a
)  =  b exist. Exercise 1 of [Herstein] p. 57. (Contributed by NM, 5-Dec-2006.) (Revised by AV, 28-Aug-2021.)
Hypotheses
Ref Expression
dfgrp3.b  |-  B  =  ( Base `  G
)
dfgrp3.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
dfgrp3e  |-  ( G  e.  Grp  <->  ( B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  ( (
x  .+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) )  /\  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) ) )
Distinct variable groups:    B, l,
r, x, y, z    G, l, r, x, y, z    .+ , l, r, x, y, z

Proof of Theorem dfgrp3e
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 dfgrp3.b . . 3  |-  B  =  ( Base `  G
)
2 dfgrp3.p . . 3  |-  .+  =  ( +g  `  G )
31, 2dfgrp3 17514 . 2  |-  ( G  e.  Grp  <->  ( G  e. SGrp  /\  B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )
4 simp2 1062 . . . 4  |-  ( ( G  e. SGrp  /\  B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  (
l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  B  =/=  (/) )
5 sgrpmgm 17289 . . . . . . . . . . . . . 14  |-  ( G  e. SGrp  ->  G  e. Mgm )
65adantr 481 . . . . . . . . . . . . 13  |-  ( ( G  e. SGrp  /\  x  e.  B )  ->  G  e. Mgm )
76adantr 481 . . . . . . . . . . . 12  |-  ( ( ( G  e. SGrp  /\  x  e.  B )  /\  y  e.  B
)  ->  G  e. Mgm )
8 simpr 477 . . . . . . . . . . . . 13  |-  ( ( G  e. SGrp  /\  x  e.  B )  ->  x  e.  B )
98adantr 481 . . . . . . . . . . . 12  |-  ( ( ( G  e. SGrp  /\  x  e.  B )  /\  y  e.  B
)  ->  x  e.  B )
10 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( G  e. SGrp  /\  x  e.  B )  /\  y  e.  B
)  ->  y  e.  B )
111, 2mgmcl 17245 . . . . . . . . . . . 12  |-  ( ( G  e. Mgm  /\  x  e.  B  /\  y  e.  B )  ->  (
x  .+  y )  e.  B )
127, 9, 10, 11syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( G  e. SGrp  /\  x  e.  B )  /\  y  e.  B
)  ->  ( x  .+  y )  e.  B
)
1312adantr 481 . . . . . . . . . 10  |-  ( ( ( ( G  e. SGrp  /\  x  e.  B
)  /\  y  e.  B )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  ( x  .+  y )  e.  B
)
141, 2sgrpass 17290 . . . . . . . . . . . . 13  |-  ( ( G  e. SGrp  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) )
15143anassrs 1290 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. SGrp  /\  x  e.  B
)  /\  y  e.  B )  /\  z  e.  B )  ->  (
( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )
1615ralrimiva 2966 . . . . . . . . . . 11  |-  ( ( ( G  e. SGrp  /\  x  e.  B )  /\  y  e.  B
)  ->  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) )
1716adantr 481 . . . . . . . . . 10  |-  ( ( ( ( G  e. SGrp  /\  x  e.  B
)  /\  y  e.  B )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  A. z  e.  B  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
18 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( G  e. SGrp  /\  x  e.  B
)  /\  y  e.  B )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )
1913, 17, 183jca 1242 . . . . . . . . 9  |-  ( ( ( ( G  e. SGrp  /\  x  e.  B
)  /\  y  e.  B )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  ( ( x 
.+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) )  /\  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )
2019ex 450 . . . . . . . 8  |-  ( ( ( G  e. SGrp  /\  x  e.  B )  /\  y  e.  B
)  ->  ( ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y )  -> 
( ( x  .+  y )  e.  B  /\  A. z  e.  B  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) ) )
2120ralimdva 2962 . . . . . . 7  |-  ( ( G  e. SGrp  /\  x  e.  B )  ->  ( A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y )  ->  A. y  e.  B  ( ( x  .+  y )  e.  B  /\  A. z  e.  B  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) ) )
2221ralimdva 2962 . . . . . 6  |-  ( G  e. SGrp  ->  ( A. x  e.  B  A. y  e.  B  ( E. l  e.  B  (
l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y )  ->  A. x  e.  B  A. y  e.  B  ( (
x  .+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) )  /\  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) ) )
2322a1d 25 . . . . 5  |-  ( G  e. SGrp  ->  ( B  =/=  (/)  ->  ( A. x  e.  B  A. y  e.  B  ( E. l  e.  B  (
l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y )  ->  A. x  e.  B  A. y  e.  B  ( (
x  .+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) )  /\  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) ) ) )
24233imp 1256 . . . 4  |-  ( ( G  e. SGrp  /\  B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  (
l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  A. x  e.  B  A. y  e.  B  ( (
x  .+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) )  /\  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )
254, 24jca 554 . . 3  |-  ( ( G  e. SGrp  /\  B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  (
l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  ( B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  ( (
x  .+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) )  /\  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) ) )
26 n0 3931 . . . . . 6  |-  ( B  =/=  (/)  <->  E. a  a  e.  B )
27 3simpa 1058 . . . . . . . . 9  |-  ( ( ( x  .+  y
)  e.  B  /\  A. z  e.  B  ( ( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  ( ( x 
.+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) ) )
28272ralimi 2953 . . . . . . . 8  |-  ( A. x  e.  B  A. y  e.  B  (
( x  .+  y
)  e.  B  /\  A. z  e.  B  ( ( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  A. x  e.  B  A. y  e.  B  ( ( x  .+  y )  e.  B  /\  A. z  e.  B  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) ) )
291, 2issgrpn0 17287 . . . . . . . 8  |-  ( a  e.  B  ->  ( G  e. SGrp  <->  A. x  e.  B  A. y  e.  B  ( ( x  .+  y )  e.  B  /\  A. z  e.  B  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) ) ) )
3028, 29syl5ibr 236 . . . . . . 7  |-  ( a  e.  B  ->  ( A. x  e.  B  A. y  e.  B  ( ( x  .+  y )  e.  B  /\  A. z  e.  B  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  G  e. SGrp )
)
3130exlimiv 1858 . . . . . 6  |-  ( E. a  a  e.  B  ->  ( A. x  e.  B  A. y  e.  B  ( ( x 
.+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) )  /\  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  G  e. SGrp ) )
3226, 31sylbi 207 . . . . 5  |-  ( B  =/=  (/)  ->  ( A. x  e.  B  A. y  e.  B  (
( x  .+  y
)  e.  B  /\  A. z  e.  B  ( ( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  G  e. SGrp )
)
3332imp 445 . . . 4  |-  ( ( B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  (
( x  .+  y
)  e.  B  /\  A. z  e.  B  ( ( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )  ->  G  e. SGrp )
34 simpl 473 . . . 4  |-  ( ( B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  (
( x  .+  y
)  e.  B  /\  A. z  e.  B  ( ( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )  ->  B  =/=  (/) )
35 simp3 1063 . . . . . 6  |-  ( ( ( x  .+  y
)  e.  B  /\  A. z  e.  B  ( ( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )
36352ralimi 2953 . . . . 5  |-  ( A. x  e.  B  A. y  e.  B  (
( x  .+  y
)  e.  B  /\  A. z  e.  B  ( ( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )
3736adantl 482 . . . 4  |-  ( ( B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  (
( x  .+  y
)  e.  B  /\  A. z  e.  B  ( ( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )  ->  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  (
l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )
3833, 34, 373jca 1242 . . 3  |-  ( ( B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  (
( x  .+  y
)  e.  B  /\  A. z  e.  B  ( ( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )  ->  ( G  e. SGrp  /\  B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )
3925, 38impbii 199 . 2  |-  ( ( G  e. SGrp  /\  B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  (
l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  <->  ( B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  ( (
x  .+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) )  /\  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) ) )
403, 39bitri 264 1  |-  ( G  e.  Grp  <->  ( B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  ( (
x  .+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) )  /\  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   (/)c0 3915   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941  Mgmcmgm 17240  SGrpcsgrp 17283   Grpcgrp 17422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator